留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热反射降温路面路表构造特性及其光热性能影响

李辉 张雪 吕兴国 贾明

李辉, 张雪, 吕兴国, 贾明. 热反射降温路面路表构造特性及其光热性能影响[J]. 交通运输工程学报, 2025, 25(5): 96-116. doi: 10.19818/j.cnki.1671-1637.2025.05.008
引用本文: 李辉, 张雪, 吕兴国, 贾明. 热反射降温路面路表构造特性及其光热性能影响[J]. 交通运输工程学报, 2025, 25(5): 96-116. doi: 10.19818/j.cnki.1671-1637.2025.05.008
LI Hui, ZHANG Xue, LYU Xing-guo, JIA Ming. Surface structural characteristics of heat-reflective cooling pavement and their influence on optical and thermal performance[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 96-116. doi: 10.19818/j.cnki.1671-1637.2025.05.008
Citation: LI Hui, ZHANG Xue, LYU Xing-guo, JIA Ming. Surface structural characteristics of heat-reflective cooling pavement and their influence on optical and thermal performance[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 96-116. doi: 10.19818/j.cnki.1671-1637.2025.05.008

热反射降温路面路表构造特性及其光热性能影响

doi: 10.19818/j.cnki.1671-1637.2025.05.008
基金项目: 

国家重点研发计划 2023YFB2604000

甘肃省交通运输厅科技项目 2023-10

上海科委国际科技合作项目 23210711400

河南省交通运输厅科技项目 2023-4-2

详细信息
    作者简介:

    李辉(1983-),男,河南漯河人,同济大学教授,工学博士,从事功能型道路材料与结构研究

    通讯作者:

    吕兴国(1988-),男,甘肃兰州人,甘肃省交通投资管理有限公司高级工程师

  • 中图分类号: U416.2

Surface structural characteristics of heat-reflective cooling pavement and their influence on optical and thermal performance

Funds: 

National Key R&D Program of China 2023YFB2604000

Research and Technology Program of the Gansu Provincial Department of Transportation 2023-10

International Science and Technology Cooperation Project of the Science and Technology Commission of Shanghai Municipality 23210711400

Research and Technology Program of the Henan Provincial Department of Transportation 2023-4-2

More Information
    Corresponding author: LYU Xing-guo (1988-), male, senior engineer, 1620111784@qq.com
Article Text (Baidu Translation)
  • 摘要: 研究了路表构造特性对于热反射降温涂层实际应用时光学反射及降温效果的影响程度,从而为缓解城市热岛效应的热反射降温沥青路面材料设计提供参考。采用正交设计方法设置9种代表性级配,并制备优选了反射率覆盖范围较广的白色、灰色、黑色热反射涂层。采用激光纹理扫描、空隙数字图像处理、反射波谱测试、基于室内太阳辐射模拟的降温试验等方法,分别获取路表宏微观形貌与光热性能指标,并进行相关性与显著性分析。研究结果表明:综合考虑涂层全频谱反射率及防眩视觉安全,最优级配类型为密级配最大公称粒径为5 mm的细粒式;热反射路面纵向纹理(尤其是轮廓算数平均偏差)较水平分布与空间形态而言对于反射率的影响较更显著,相关性系数达0.9;为降低路表纹理对反射降温性能的影响,建议将涂覆涂层后的路表纹理纵向评定参数轮廓算术平均偏差控制在0.2 mm以内,轮廓均方根偏差小于0.4 mm;最优级配条件下白色、灰色、黑色热反射路面降温效果分别达14.0 ℃、10.6 ℃、7.3 ℃;随着路表空隙率的提高,热反射路面总反射率呈线性下降趋势,降温效果折减率达13%~21%,因此可针对城市道路、停车场、人行道等具体应用路表条件,在热反射涂层设计时将其考虑在内。所提出的热反射降温路表构造特性对其光热性能的影响规律,可为热反射降温路面材料精准设计与性能提升提供理论依据。

     

  • 图  1  含有不同类型及掺量颜填料的热反射涂层试件

    Figure  1.  Heat reflective coatings containing different types and dosages of pigments and fillers

    图  2  不同类型沥青混合料级配曲线

    Figure  2.  Different-types of grading curves of asphalt mixtures

    图  3  不同级配类型热反射路面材料

    Figure  3.  Heat reflective pavement materials with different gradation types

    图  4  紫外/可见/近红外分光光度计

    Figure  4.  UV/Vis/NIR spectrophotometer

    图  5  激光纹理扫描仪(LTS 9500)

    Figure  5.  Laser texture scanner (LTS 9500)

    图  6  基于图像处理的空隙率计算方法

    Figure  6.  Calculation method of void ratio based on image processing

    图  7  基于室内太阳辐射模拟的降温试验装置

    Figure  7.  Cooling effect test equipment based on indoor solar radiation simulation

    图  8  不同粒径金红石型TiO2白色涂层反射波谱图与反射率及亮度值

    Figure  8.  Reflection spectra and reflectance and lightness of Rutile TiO2 coatings with different particle sizes

    图  9  含有不同类型纳米TiO2及颜填料掺量的CuO涂层反射波谱

    Figure  9.  Reflection spectra of CuO coatings containing different types of nano-TiO2 and pigment dosages

    图  10  含有不同比例CuO/ Fe: Cr2O3与TiO2的涂层反射率及亮度值

    Figure  10.  Reflectance and lightness of coatings with different CuO/ Fe: Cr2O3 and TiO2 contents

    图  11  不同种类涂层总反射率及可见光反射率与亮度值的相关关系

    Figure  11.  Correlation between total reflectance, reflectance in visible light band and lightness of different types of coatings

    图  12  基于多指标综合评分法的正交试验各因子影响效应曲线

    Figure  12.  Influence effect curve of each factor in orthogonal experiment based on multi-index grading method

    图  13  单指标平衡评价法中各因子不同水平对RtotalRnirL*的影响效应曲线

    Figure  13.  Impact effect curves of different levels of each factor on Rtotal, Rnir, and L* in the single index balanced evaluation method

    图  14  涂覆不同种类热反射涂层的各级配沥青混合料试件表面形貌

    Figure  14.  Surface morphology of asphalt mixture specimens with different gradations and coated with different types of heat reflective coatings

    图  15  涂覆白色热反射涂层及无涂层沥青混合料表面纹理参数

    Figure  15.  Surface texture parameters of asphalt mixtures with white heat reflective coating and without coating

    图  16  轮廓偏斜度示意

    Figure  16.  Schematic of profile skewness Rsk

    图  17  路表纹理参数与全频谱光学指标的相关性

    Figure  17.  The correlation between pavement surface texture parameters and full spectrum optical indicators

    图  18  不同波段反射率提升值与平均降温值散点图及回归曲线

    Figure  18.  Scatter plots and regression curves of reflectance increase values in different light bands and average cooling values

    图  19  平面空隙率对热反射路面材料总反射率的影响

    Figure  19.  Effect of surface void ratio on total reflectance of heat reflective pavement materials

    图  20  室内太阳辐射模拟条件下涂覆不同涂层及不同级配类型的沥青混合料表面温度变化

    Figure  20.  Surface temperature changes of asphalt mixtures with different coatings and gradation types under indoor solar radiation simulation conditions

    图  21  考虑路表纹理的热反射路面表面降温值与总反射率散点图及回归曲线

    Figure  21.  Scatter plot and regression curve of surface cooling value of heat reflective pavement and Rtotal considering pavement surface texture

    表  1  不同黑色、灰色热反射涂层中颜填料比例

    Table  1.   Pigment and fillers contents for black and grey reflective coatings

    涂层类型 黑色颜填料质量占颜填料总量比例/% 涂层类型 黑色颜填料质量占颜填料总量比例/%
    CuO-黑色 CuO-黑色 100.0 Fe: Cr2O3 P.Br.29-黑色 Fe: Cr2O3 L0095-黑色 100.0
    CuO+TiO2- HR灰色-1 CuO+TiO2- HNIR灰色-1 90.9 Fe: Cr2O3 P.Br.29+ TiO2-HNIR灰色-1 Fe: Cr2O3 L0095+ TiO2-HNIR灰色-1 90.0
    CuO+TiO2- HR灰色-2 CuO+TiO2- HNIR灰色-2 66.7 Fe: Cr2O3 P.Br.29+ TiO2-HNIR灰色-2 Fe: Cr2O3 L0095+ TiO2-HNIR灰色-2 70.0
    CuO+TiO2- HR灰色-3 CuO+TiO2- HNIR灰色-3 50.0 Fe: Cr2O3 P.Br.29+ TiO2-HNIR灰色-3 Fe: Cr2O3 L0095+ TiO2-HNIR灰色-3 50.0
    CuO+TiO2- HR灰色-4 CuO+TiO2- HNIR灰色-4 33.3 Fe: Cr2O3 P.Br.29+ TiO2-HNIR灰色-4 Fe: Cr2O3 L0095+ TiO2-HNIR灰色-4 20.0
    CuO+TiO2- HR灰色-5 CuO+TiO2- HNIR灰色-5 20.0 Fe: Cr2O3 P.Br.29+ TiO2-HNIR灰色-5 Fe: Cr2O3 L0095+ TiO2-HNIR灰色-5 10.0
    CuO+TiO2- HR灰色-6 CuO+TiO2- HNIR灰色-6 10.0
    CuO+TiO2- HR灰色-7 CuO+TiO2- HNIR灰色-7 5.0
    注:TiO2-HR对应涂层采用下文颜填料优选所得具有较高总反射率(High Reflectance, HR)的粒径为400 nm的TiO2,TiO2-HNIR对应具有较高近红外反射率(High Near Infrared Reflectance, HNIR)的粒径为1 000 nm的TiO2
    下载: 导出CSV

    表  2  正交试验L9(34)因子及水平

    Table  2.   Orthogonal experiment factor and level of L9(34)

    试验号 A B C 误差列
    1 AC 5 F 1
    2 AC 13 M 2
    3 AC 20 C 3
    4 SMA 5 M 3
    5 SMA 13 C 1
    6 SMA 20 F 2
    7 OGFC 5 C 2
    8 OGFC 13 F 3
    9 OGFC 20 M 1
    下载: 导出CSV

    表  3  涂覆不同种类涂层的各级配类型沥青混合料反射率及亮度值

    Table  3.   Reflectance and lightness of asphalt mixtures with different gradations and coated with different types of heat reflective coatings

    试件类型 白色涂层 灰色涂层 黑色涂层 无涂层对照组
    Rtotal/% Rnir/% L* Rtotal/% Rnir/% L* Rtotal/% Rnir/% L* Rtotal/% Rnir/% L*
    1 AC-5-F 84.40 87.90 96.02 59.39 74.95 65.95 33.01 50.67 36.20 5.77 6.42 28.15
    2 AC-13-M 82.85 84.23 96.46 54.12 69.85 64.12 29.45 45.36 36.19 5.71 6.41 27.99
    3 AC-20-C 75.25 75.73 93.02 51.70 66.98 61.61 26.43 40.84 35.83 5.09 5.70 26.13
    4 SMA-5-M 81.80 83.38 95.90 54.33 69.80 64.54 29.24 45.04 36.19 6.00 6.65 28.76
    5 SMA-13-C 77.28 77.93 94.28 51.73 67.21 62.36 27.22 42.03 36.13 5.59 6.02 27.69
    6 SMA-20-F 76.62 80.28 92.35 52.18 68.03 62.35 27.54 42.50 36.15 5.09 5.61 26.13
    7 OGFC-5-C 71.90 72.85 92.58 47.49 60.63 59.77 25.17 40.96 35.89 4.21 4.46 23.72
    8 OGFC-13-F 71.00 71.55 90.19 47.47 61.78 59.65 25.89 40.04 36.05 4.05 4.15 23.44
    9 OGFC-20-M 67.20 66.50 90.08 43.14 55.42 55.62 23.11 35.88 35.66 3.87 4.06 22.17
    下载: 导出CSV

    表  4  各试件指标及综合得分(白色涂层)

    Table  4.   Indexes and comprehensive scores of each specimen (white coating)

    编号 量纲为1的指标 综合评分
    Rtotal Rnir L*
    1 1.00 1.00 0.07 0.72
    2 0.91 0.83 0.00 0.61
    3 0.47 0.43 0.54 0.48
    4 0.85 0.79 0.09 0.60
    5 0.59 0.53 0.34 0.49
    6 0.55 0.64 0.64 0.61
    7 0.27 0.30 0.61 0.38
    8 0.22 0.24 0.98 0.45
    9 0.00 0.00 1.00 0.30
    权重 0.35 0.35 0.30
    下载: 导出CSV

    表  5  基于多指标综合评分法的优化计算结果(白色涂层)

    Table  5.   Optimization calculation results based on multi-index grading method (white coating)

    均值与极差 A B C
    T1 0.60 0.57 0.60
    T2 0.57 0.52 0.50
    T3 0.38 0.46 0.45
    R 0.22 0.11 0.14
    因子主次 级配类型>最大公称粒径>级配粗细
    理论最优配类型 AC-5-F
    实际最优配类型 AC-5-F
    下载: 导出CSV

    表  6  单指标平衡评价法各参数直观极差分析计算表(白色涂层)

    Table  6.   Calculation table for range analysis of various parameters based on single index balanced evaluation method (white coating)

    指标 均值与极差 A B C 理想最优类型
    Rtotal T1 80.83 79.37 77.34 AC-5-F
    T2 78.57 77.04 77.28
    T3 70.03 73.02 74.81
    R 10.80 6.34 2.53
    Rnir T1 82.62 81.38 79.91 AC-5-F
    T2 80.53 77.90 78.04
    T3 70.30 74.17 75.50
    R 12.32 7.21 4.41
    L* T1 95.17 94.83 92.85 OGFC- 20-F
    T2 94.18 93.64 94.15
    T3 90.95 91.82 93.29
    R 4.22 3.02 1.29
    下载: 导出CSV

    表  7  单指标平衡评价法各参数方差与贡献率分析计算表(白色涂层)

    Table  7.   Calculation table for variance and contribution analysis of various parameters based on single index balanced evaluation method with white coating

    指标 因子 平方和 自由度 均方和 F 因子贡献率
    Rtotal A 194.60 2.00 97.30 97.78 71.10%
    B 61.80 2.00 30.90 31.05 22.08%
    C 12.52 2.00 6.26 6.29 3.89%
    误差 1.99 2.00 1.00 2.94%
    总和 270.90 8.00 F0.900(2, 2)=9.0, F0.950(2, 2)=19.0, F0.975(2, 2)=39.0
    Rnir A 260.80 2.00 130.40 32.16 67.17%
    B 77.94 2.00 38.97 9.61 18.56%
    C 29.35 2.00 14.67 3.62 5.65%
    误差 8.11 2.00 4.05 8.62%
    总和 376.20 8.00 F0.900(2, 2)=9.0, F0.950(2, 2)=19.0
    L* A 29.17 2.00 14.59 33.52 60.88%
    B 13.85 2.00 6.93 15.92 27.93%
    C 2.59 2.00 1.30 2.98 3.71%
    误差 0.87 2.00 0.44 7.49%
    T 46.49 8.00 F0.900(2, 2)=9.0, F0.950(2, 2)=19.0
    下载: 导出CSV

    表  8  多元线性回归统计结果(ANOVA检验)

    Table  8.   Multiple linear regression statistical results (ANOVA test)

    统计项 平方和 自由度 均方和 F 显著性 R R2 调整后R2
    回归方程 347.690 3 115.897 122.890 <0.001 0.965 0.932 0.924
    残留误差 25.464 27 0.943
    总计 373.154 30
    下载: 导出CSV

    表  9  多元线性回归统计结果(t检验)

    Table  9.   Multiple linear regression statistical results (t test)

    模型 非标准化系数 标准误差 标准化系数 t 显著性 共线性统计
    容差 方差膨胀系数
    常量 3.559 0.721 4.938 <0.001
    ΔRuv -0.346 0.128 -0.305 -2.694 0.012 0.197 5.080
    ΔRvisi 0.038 0.014 0.317 2.623 0.014 0.173 5.767
    ΔRnir 0.161 0.024 0.936 6.757 <0.001 0.132 7.588
    下载: 导出CSV
  • [1] JANDAGHIAN Z, AKBARI H. The effect of increasing surface albedo on urban climate and air quality: A detailed study for Sacramento, Houston, and Chicago[J]. Climate, 2018, 6(2): 19.
    [2] LI H, HARVEY J T, HOLLAND T J, et al. The use of reflective and permeable pavements as a potential practice for heat island mitigation and stormwater management[J]. Envi-ronmental Research Letters, 2013, 8(1): 015023.
    [3] QIN Y H. A review on the development of cool pavements to mitigate urban heat island effect[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 445-459.
    [4] ANUPAM B R, SAHOO U C, CHANDRAPPA A K, et al. Emerging technologies in cool pavements: A review[J]. Con-struction and Building Materials, 2021, 299: 123892.
    [5] JIANG J, JIN Y L, BAO T, et al. Sensible heat discharging from pavements with varying thermophysical properties[J]. Sustainable Cities and Society, 2019, 45: 431-438.
    [6] GUI J, PHELAN P E, KALOUSH K E, et al. Impact of pavement thermophysical properties on surface temperatures[J]. Journal of materials in civil engineering, 2007, 19(8): 680-690.
    [7] QIN Y H, HILLER J E. Understanding pavement-surface energy balance and its implications on cool pavement deve-lopment[J]. Energy and Buildings, 2014, 85: 389-399.
    [8] AKBARI H, MENON S, ROSENFELD A. Global cooling: Increasing world-wide urban albedos to offset CO2[J]. Climatic Change, 2009, 94(3): 275-286.
    [9] 哈成勇. 道路涂料与涂装技术[M]. 北京: 化学工业出版社, 2001.

    HA Cheng-yong. Road coatings and painting technology[M]. Beijing: Chemical Industry Press, 2001.
    [10] 徐永祥, 李运德, 师华, 等. 太阳热反射隔热涂料研究进展[J]. 涂料工业, 2010, 40(1): 70-74.

    XU Yong-xiang, LI Yun-de, SHI Hua, et al. Present situa-tion and progress of solar heat reflective thermal insulating coatings[J]. Paint & Coatings Industry, 2010, 40(1): 70-74.
    [11] DONG S M, QUEK J Y, VAN HERK A M, et al. Polymer-encapsulated TiO2 for the improvement of NIR reflectance and total solar reflectance of cool coatings[J]. Industrial & Engineering Chemistry Research, 2020, 59(40): 17901-17910.
    [12] LI H, SABOORI A, CAO X J. Information synthesis and preliminary case study for life cycle assessment of reflective coatings for cool pavements[J]. International Journal of Transportation Science and Technology, 2016, 5(1): 38-46.
    [13] 郑木莲, 何利涛, 高璇, 等. 基于降温功能的沥青路面热反射涂层性能分析[J]. 交通运输工程学报, 2013, 13(5): 10-16. https://transport.chd.edu.cn/article/id/201305002

    ZHENG Mu-lian, HE Li-tao, GAO Xuan, et al. Analysis of heat-reflective coating property for asphalt pavement based on cooling function[J]. Journal of Traffic and Transportation Engineering, 2013, 13(5): 10-16. https://transport.chd.edu.cn/article/id/201305002
    [14] AYAR P, RUHI A, BAIBORDY A, et al. Toward sustain-able roads: A critical review on nano-TiO2 application in asp-halt pavement[J]. Innovative Infrastructure Solutions, 2024, 9(5): 148.
    [15] UEMOTO K L, SATO N M N, JOHN V M. Estimating thermal performance of cool colored paints[J]. Energy and Buildings, 2010, 42(1): 17-22.
    [16] KINOUCHI T, YOSHINAKA T, FUKAE N, et al. Deve-lopment of cool pavement with dark colored high albedo coat-ing[J]. Target: International Journal of Translation Studies, 2003, 50(40): 40.
    [17] 肖瑜. 高近红外反射稀土颜料的制备与性能研究[D]. 赣州: 江西理工大学, 2018.

    XIAO Yu. Study on preparation and properties of rare earth pigments with high near infrared reflectance[D]. Ganzhou: Jiangxi University of Science and Technology, 2018.
    [18] YOU Z L, ZHANG M Y, WANG J W, et al. A black near-infrared reflective coating based on nano-technology[J]. Energy and Buildings, 2019, 205: 109523.
    [19] 张缇. 硫硒化锌基近红外反射色料及其复合涂层材料的制备与性能研究[D]. 广州: 华南理工大学, 2019.

    ZHANG Ti. Synthesis and properties of zinc selenosulfide-based color pigments and coating composites with high near-infrared reflectance[D]. Guangzhou: South China University of Technology, 2019.
    [20] SYNNEFA A, DANDOU A, SANTAMOURIS M, et al. Cool colored coatings for passive cooling of cities[C]//AIVC. The International Workshop on Energy Performance and Environ-mental Quality of Buildings. Ghent: AIVC, 2007: 1-6.
    [21] YOU Z L, ZHANG M Y, BAI R Q, et al. A review of the near-infrared reflective coatings for cooling asphalt pavements in permafrost regions[J]. Construction and Building Mate-rials, 2025, 498: 143898.
    [22] CHEN Y, SHA A, CAO Y, et al. Iron-chromium based hi-gh infrared reflectance coating for cooling asphalt pavements towards low-carbon cities[J]. Construction and Building Ma-terials, 2025, 484: 141611.
    [23] 潘述平. 孔隙率对多孔透水路面反射率影响的试验研究[D]. 绍兴: 绍兴文理学院, 2019.

    PAN Shu-ping. Experimental Study on the Effect of Porosity on the Reflectivity of Porous Permeable Pavement[D]. Shao-xing: Shaoxing University, 2019.
    [24] CAO X J, TANG B M, ZOU X L, et al. Analysis on the cooling effect of a heat-reflective coating for asphalt pavement[J]. Road Materials and Pavement Design, 2015, 16(3): 716-726.
    [25] 曹雪娟, 唐伯明, 朱洪洲. 降低沥青路面温度的热反射涂层性能研究[J]. 重庆交通大学学报(自然科学版), 2010, 29(3): 391-393, 420.

    CAO Xue-juan, TANG Bo-ming, ZHU Hong-zhou. Study on performance of heat-reflective coat of lowering asphalt pave-ment temperature[J]. Journal of Chongqing Jiaotong Univer-sity(Natural Science), 2010, 29(3): 391-393, 420.
    [26] 王元元. 沥青路面抗滑特性与其表面粗糙特性之关系研究[D]. 南京: 东南大学, 2017.

    WANG Yuan-yuan. Study on the relationship between sliding resistance of asphalt pavement and its surface rough charac-teristics[D]. Nanjing: Southeast University, 2017.
    [27] 梁遐意. 低噪声功能路面表面纹理优化研究[D]. 广州: 华南理工大学, 2020.

    LIANG Xia-yi. Research and optimization of pavement sur-face texture with low noise function[D]. Guangzhou: South China University of Technology, 2020.
    [28] GUO H Y, LI X Y, WANG P. Characterization of absorp-tivities to solar radiation for colored pigments in coatings[J]. Journal of Coatings Technology, 2001, 73(923): 71-75.
    [29] DU Y C, WENG Z H, LI F, et al. A novel approach for pa-vement texture characterisation using 2D-wavelet decom-position[J]. International Journal of Pavement Engineering, 2022, 23(6): 1851-1866.
    [30] 沙爱民. 环保型路面材料与结构[M]. 北京: 科学出版社, 2012.

    SHA Ai-min. Material and structure of eco-friendly pave-ments[M]. Beijing: Science Press, 2012.
    [31] 谢宁. 热反射路面涂层全频谱混合反射行为与光-热环境影响研究[D]. 上海: 同济大学, 2023.

    XIE Ning. Investigation on full spectrum and mixed reflection behavior of reflective pavement coatings and its influence on light-thermal environment[D]. Shanghai: Tongji University, 2023.
    [32] ZHANG X, LI H, JIA M, et al. Laboratorial investigation on optical, thermal and pavement performance of biomimetic dark reflective coatings with composite structure for pave-ment cooling[J]. Building and Environment, 2024, 266: 112057.
  • 加载中
图(21) / 表(9)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  25
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-01
  • 录用日期:  2025-08-01
  • 修回日期:  2025-05-24
  • 刊出日期:  2025-10-28

目录

    /

    返回文章
    返回