JI Jie, LIU Lu-hou, SUO Zhi, ZHANG Yan-jun, JIN Ming-yang, NING Xiang-xiang, JIA Xiao-peng, YAO Hui. Influence of epoxy asphalt concrete anti-fatigue layer on structure of perpetual asphalt concrete pavement with flexible base[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 1-8.
Citation: JI Jie, LIU Lu-hou, SUO Zhi, ZHANG Yan-jun, JIN Ming-yang, NING Xiang-xiang, JIA Xiao-peng, YAO Hui. Influence of epoxy asphalt concrete anti-fatigue layer on structure of perpetual asphalt concrete pavement with flexible base[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 1-8.

Influence of epoxy asphalt concrete anti-fatigue layer on structure of perpetual asphalt concrete pavement with flexible base

More Information
  • Author Bio:

    JI Jie(1972-), female, professor, PhD, +86-10-68322520, jijie@bucea.edu.cn

  • Received Date: 2017-03-25
  • Publish Date: 2017-08-25
  • A kind of new epoxy asphalt for road engineering was developed. Based on tensile test, viscosity test, and fluorescence microscope technology, the tensile strength, breaking elongation, changing rules of viscosity with time, and microscopic curing mechanism of epoxy asphalt were evaluated. The epoxy asphalt concrete AC-13 C was designed, and its road performances andfatigue characteristics were evaluated. When common asphalt concrete, SBS modified asphalt concrete and epoxy asphalt concrete were taken as anti-fatigue layers, the influences of antifatigue layers on the structural thickness and fatigue life of perpetual asphalt concrete pavement with flexible base were analyzed. Test result shows that the tensile strength of epoxy asphalt is 2.47 MPa and the breaking elongation is 2.65, which satisfies the technical requirement that the tensile strength is not less than 1.5 MPa and the breaking elongation is not less than 2. The time needs 54 min when the viscosity of epoxy asphalt reach to 1 Pa·s, after 54 min, the viscosity increases rapidly, so the total time for mixing, transportation, and paving should be controlled within 54 min in construction. The fatigue strain limit is 333μεwhen the fatigue life is 1 billion times according to the fatigue equation of epoxy asphalt concrete. Compared to common asphalt concrete and SBS modified asphalt concrete, when epoxy asphalt concrete is taken as anti-fatigue layer, the fatigue life of perpetual asphalt concrete pavement increases by 2.92×105 times and 4.39×103 times respectively, and the thickness decreases 18 cm and 10 cm. The microscopic curing mechanism of epoxy asphalt is that epoxy resin and hardener form cross-linked and three-dimensional network structure from point to line and from line to net in asphalt.

     

  • loading
  • [1]
    NEWCOMB D E, BUNCHER M, HUDDLESTON I J. Concepts of perpetual pavements[J]. Transportation Research Circular, 2001 (503): 4-11.
    [2]
    XUE Zhong-jun, WANG Chun-ming, ZHANG Wei, et al. Research on pavement structure and material design of semirigid base long-life pavement[J]. Journal of Highway and Transportation Research and Development, 2015, 32 (10): 37-42, 56. (in Chinese). doi: 10.3969/j.issn.1002-0268.2015.10.007
    [3]
    SU Bi-guo. Analysis of heavy-loaded long-life asphalt pavement[D]. Hangzhou: Zhejiang University, 2008. (in Chinese).
    [4]
    NEWCOMB D. Perpetual pavements—a synthesis[R]. Lanham: Asphalt Pavement Alliance, 2002.
    [5]
    HARM E. Illinois extended-life hot-mix asphalt pavements[J]. Transportation Research Circular, 2001 (503): 108-113.
    [6]
    MONISMITH C L. Analytically based asphalt pavement design and rehabilitation: theory to practice, 1962—1992[J]. Transportation Research Record, 1992 (1354): 5-26.
    [7]
    VON QUINTUS H L. Hot-mix asphalt layer thickness design for longer-life bituminous pavements[J]. Transportation Research Circular, 2001 (503): 66-78.
    [8]
    MAHONEY J P. Study of long-lasting pavements in Washington State[J]. Transportation Research Circular, 2001 (503): 88-95.
    [9]
    NUNN M E, BROWN A, WESTON D, et al. Design of long-life flexible pavements for heavy traffic[R]. Berkshire: Transport Research Laboratory, 1997.
    [10]
    KANZAKI H, KUBO K, KAMIYA K. Long-term pavement performance (LTPP) program in Japan[C]∥ASCE. Pacific Rim TransTech Conference—Volume II: International Ties, Management Systems, Propulsion Technology, Strategic Highway Research Program. Reston: ASCE, 2015: 1-12.
    [11]
    Minnesota Asphalt Pavement Association. Summary of Minnesota research findings[R]. Saint Paul: Minnesota Asphalt Pavement Association, 2003.
    [12]
    PROWELL B D, BROWN E R. Methods for determining the endurance limit using beam fatigue tests[R]. Auburndale: National Center for Asphalt Technology, 2006.
    [13]
    PRIEST A L, TIMM D H. Methodology and calibration of fatigue transfer functions for mechanistic-empirical flexible pavement design[R]. Auburndale: National Center for Asphalt Technology, 2006.
    [14]
    ROBBINS M M, TRAN N H, TIMMB D H, et al. Adaptation and validation of stochastic limiting strain distribution and fatigue ratio concepts for perpetual pavement design[J]. Road Materials and Pavement Design, 2015, 16 (S2): 100-124.
    [15]
    NIE Yi-hua, ZHANG Qi-sen. Mechanical analysis and asphalt layer subdivision of long life asphalt pavement (LLAP) structures[J]. Journal of Highway and Transportation Research and Development, 2008, 25 (5): 13-17. (in Chinese). doi: 10.3969/j.issn.1002-0268.2008.05.003
    [16]
    YI Xiang-yang. Discussion and application of long-life flexible pavement technology[J]. Journal of Highway and Transportation Research and Development, 2015, 32 (6): 25-31. (in Chinese). doi: 10.3969/j.issn.1002-0268.2015.06.005
    [17]
    QIAN Zhen-dong, WANG Jiang-yang, WANG Ya-qi. Fatigue performance of composite structure for perpetual pavement on cement concrete bridge deck[J]. China Journal of Highway and Transport, 2012, 25 (5): 67-73. (in Chinese). doi: 10.3969/j.issn.1001-7372.2012.05.012
    [18]
    CUI Peng, SHAO Min-hua, SUN Li-jun. Research on design indices of perpetual asphalt pavement[J]. Journal of Traffic and Transportation Engineering, 2008, 8 (3): 37-42. (in Chinese). http://transport.chd.edu.cn/article/id/200803009
    [19]
    PING Shu-jiang, SHEN Ai-qin, LI Peng. Study of fatigue limit of asphalt mixture for perpetual pavement[J]. China Journal of Highway and Transport, 2009, 22 (1): 34-38. (in Chinese). doi: 10.3321/j.issn:1001-7372.2009.01.006
    [20]
    SUN Ce. The analysis of long life asphalt pavement fatigue model and design index[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese).
    [21]
    WANG Xi, ZHANG Lu-lu. Curing kinetics of asphalt-epoxy resin composite system[J]. New Chemical Materials, 2017, 45 (6): 128-133. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201706043.htm
    [22]
    WANG Li-jie, WANG Yue-xin, ZHANG Qian. Synthesis and application of thermosetting epoxy asphalt compatibilizer[J]. Thermosetting Resin, 2015, 30 (1): 52-56. (in Chinese).
    [23]
    XUE Yong-chao, QIAN Zhen-dong. Influence of key factors in construction on pavement performances of epoxy asphalt concrete[J]. Journal of Traffic and Transportation Engineering, 2016, 16 (3): 17-27. (in Chinese). http://transport.chd.edu.cn/article/id/201603003
    [24]
    KANG Yang. Preparation and characterization of epoxy resin modified asphalt[D]. Nanjing: Southeast University, 2006. (in Chinese).
    [25]
    OUYANG Yang. Research on performance of epoxy asphalt mixture on long-span steel bridge deck[D]. Xi'an: Chang'an University, 2008. (in Chinese).
    [26]
    WANG Jian-wei, YU Li, LUO Sang. Service condition survey and analysis of epoxy asphalt concrete pavement on Nanjing Second Yangtze River Bridge after thirteen years life[J]. Highway, 2015 (8): 37-40. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201508008.htm
  • 加载中

Catalog

    Article Metrics

    Article views (1262) PDF downloads(1441) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return