Selection and optimization model of standby train deployment stations on urban rail transit for large passenger flow
-
摘要: 为快速疏解城轨线路上车站的大客流,减少乘客的等待时间,研究了备用车投放问题; 在考虑列车追踪关系、列车停站时间等约束的基础上,建立了综合备用车投放时机确定、投放最佳车站选择和时刻表动态调整的多目标优化模型; 界定了城轨备用车开行条件,提出了城轨备用车投放时机的定量化判定方法; 用0-1变量表征车站是否具备备用车投放条件,并将其作为模型输入,以减小大客流车站乘客等待时间和降低运行图偏离时间(延误时间)为优化目标,构建了备用车投放的混合整数非线性规划模型,该模型通过比较不同的备用车投放方案效率得到最佳的备用车投放车站和后续开行计划; 为同时求解0-1变量与连续变量,设计了带惩罚函数的改进粒子群优化算法求解模型。研究结果表明:该方法可对所有符合备用车开行条件的车站制定投放方案,并进一步筛选出最优的备用车投放车站,最多可减少1 318 209 s的乘客等待时间,优化效率为21.9%,且改进的粒子群优化算法对混合整数非线性规划模型的适用性较好; 相比于既有城轨线路列车运行调整和时刻表优化方法,本文提出的方法在应对突发大客流的备用车投放时机上做出了更加定量化的判断,优先考虑了大客流车站的疏解能力和效率,并优化了备用车与后续列车的开行方案,可以有效解决高峰时段车站大客流问题。Abstract: In order to quickly relieve the large passenger flow of stations on urban rail transit lines and reduce the total waiting time of passengers, the problem of standby train deployment was studied. Based on the consideration of train tracking relationship, train dwelling time, and other constraints, a multi-objective optimization model was established to determine the timing of standby train deployment, select the best station, and dynamically adjust the schedule. The conditions for the deployment of standby trains were defined and a quantitative determination method for the timing of the standby train operation was proposed. A 0-1 variable was used to characterize whether the station was equipped for standby trains, and it was used as the model input. Then, a mixed integer nonlinear programming (MINP) model of standby train deployment was established to minimize the waiting time of passengers at the station with large passenger flow, and the deviation time (delay time) of the timetable was constructed. The model compared the efficiency of different standby train deployment schemes to get the best standby train deployment station and the subsequent operation plan. An improved particle swarm optimization algorithm with a penalty function was designed to deal with the 0-1 variable and continuous variables simultaneously. Research results show that the method can make plans for all stations satisfying the conditions of standby train deployment, and further select the best standby train stations from the alternative stations. The maximum total passenger waiting time reduces by 1 318 209 s, and the optimization efficiency reduces about 21.9%. Moreover, the improved particle swarm optimization algorithm has good applicability to the MINP model. Compared to the existing urban rail line train operation adjustment and schedule optimization methods, the proposed method provides a more quantitative judgment on the timing of the standby train deployment in response to large passenger flow situations. It provides the evacuation capacity and efficiency of stations with large passenger flow stations and optimizes the operation plans of the standby and subsequent trains. The problem of large passenger flows at stations during peak hours can be relieve effectively. 4 tabs, 9 figs, 30 refs.
-
表 1 列车各区间运行时间
Table 1. Running times of train at each section
区间 1~2 2~3 3~4 4~5 5~6 6~7 7~8 8~9 9~10 10~11 11~12 12~13 运行时间/s 119 76 106 71 101 92 114 89 64 75 86 121 表 2 列车各站停站时间
Table 2. Stop times of train at each station
车站 1 2 3 4 5 6 7 8 9 10 11 12 13 停站时间/s 98 30 30 30 30 50 34 36 37 55 40 48 40 表 3 备用车投放后到达各车站时间
Table 3. Arrival times at each station after deployment standby train
车站 方案1 方案2 1 18:33:43 2 18:37:20 3 18:39:06 4 18:41:22 5 18:43:03 18:31:57 6 (大客流车站) 18:45:14 18:34:08 7 18:47:36 18:36:30 8 18:50:04 18:38:58 9 18:52:09 18:41:03 10 18:53:50 18:42:44 11 18:56:00 18:44:54 12 18:58:06 18:47:00 13 19:00:55 18:49:49 表 4 备用车投放方案效果分析
Table 4. Scheme effect analysis of deployment standby trains
方案 原拥堵时间/s 备用车投放车站编号 开行备用车后拥堵时间/s 优化效率/% 1 5 991 932 1 4 673 723 21.9 2 5 991 932 5 5 099 190 14.9 -
[1] LU Jia, REN Gang, XU Ling-hui. Identification method of crowded passenger flow based on automatic fare collection data of Nanjing Metro[J]. Journal of Southeast University (English Edition), 2019, 35(2): 236-241. [2] YONG Nuo, NI Shun-jiang, SHEN Shi-fei, et al. A study of fluctuations in subway traffic from the control properties of networks[J]. Physica A: Statistical Mechanics and its Applications, 2020, 550: 124517. doi: 10.1016/j.physa.2020.124517 [3] YONG Nuo, NI Shun-jiang, SHEN Shi-fei, et al. Uncovering stable and occasional human mobility patterns: a case study of the Beijing subway[J]. Physica A: Statistical Mechanics and its Applications, 2018, 492: 28-38. doi: 10.1016/j.physa.2017.09.082 [4] ZHENG Zhi-hao, LING Xi-man, WANG Pu, et al. Hybrid model for predicting anomalous large passenger flow in urban metros[J]. IET Intelligent Transport Systems, 2021, 14(14): 1987-1996. [5] LI Shu-kai, DESSOUKY M M, YANG Li-xing, et al. Joint optimal train regulation and passenger flow control strategy for high-frequency metro lines[J]. Transportation Research Part B: Methodological, 2017, 99: 113-137. doi: 10.1016/j.trb.2017.01.010 [6] 伍敏. 城市轨道交通车站大客流处置的数据驱动模式[J]. 城市轨道交通研究, 2020, 23(3): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202003005.htmWU Min. Data-driven mode of large passenger flow emergency disposal at urban rail transit station[J]. Urban Mass Transit, 2020, 23(3): 8-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202003005.htm [7] LI Na, GUO Ren-yong. Simulation of bi-directional pedestrian flow through a bottleneck: cell transmission model[J]. Physica A: Statistical Mechanics and its Applications, 2020, 555: 124542. doi: 10.1016/j.physa.2020.124542 [8] GU Jin-jing, JIANG Zhi-bin, FAN Wei, et al. Real-time passenger flow anomaly detection considering typical time series clustered characteristics at metro stations[J]. Journal of Transportation Engineering, Part A: Systems, 2020, 146(4): 04020015. doi: 10.1061/JTEPBS.0000333 [9] 刘涛, 徐瑞华. 基于行车间隔协调调整的换乘站大客流处置[J]. 城市轨道交通研究, 2014, 17(2): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201402013.htmLIU Tao, XU Rui-hua. Disposal of large passenger flow at transfer station based on coordinated headways adjustment[J]. Urban Mass Transit, 2014, 17(2): 50-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201402013.htm [10] 李佳杰, 柏赟, 周雨鹤, 等. 基于站外限流与时刻表调整的地铁换乘站大客流协同控制[J]. 铁道学报, 2020, 42(5): 9-18. doi: 10.3969/j.issn.1001-8360.2020.05.002LI Jia-jie, BAI Yun, ZHOU Yu-he, et al. Integrated model on inbound passenger flow control and timetable regulation at transfer station[J]. Journal of the China Railway Society, 2020, 42(5): 9-18. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.05.002 [11] 方家, 王德, 谢栋灿. 上海顾村公园樱花节大客流特征及预警研究——基于手机信令数据的探索[J]. 城市规划, 2016, 40(6): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-CSGH201606009.htmFANG Jia, WANG De, XIE Dong-can. Research on dynamic change and early warning of large tourist flow based on mobile signal data analysis: a case study of Gucun Park Sakura Festival in Shanghai[J]. Urban Planning, 2016, 40(6): 43-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSGH201606009.htm [12] XU Xin-yue, LI Hai-ying, LIU Jun, et al. Passenger flow control with multi-station coordination in subway networks: algorithm development and real-world case study[J]. Transportmetrica B: Transport Dynamics, 2018, 7(1): 446-472. [13] 刘菊美. 基于车站客流密度系数监控及预警的地铁线网客流联控研究[J]. 城市轨道交通研究, 2021, 24(7): 4-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202107008.htmLIU Ju-mei. Joint control of metro network passenger flow based on station passenger density co-efficient monitoring and early warning[J]. Urban Mass Transit, 2021, 24(7): 4-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202107008.htm [14] 熊银玉, 魏巍. 城市轨道交通备用客车的运用及优化[J]. 城市轨道交通研究, 2010, 13(2): 87-88. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201002027.htmXIONG Yin-yu, WEI Wei. Application and optimization of urban rail transit standby train[J]. Urban Mass Transit, 2010, 13(2): 87-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201002027.htm [15] 白荣. 地铁备用列车在运行调整中的开行时机[J]. 铁道运输与经济, 2009, 31(4): 71-72. https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS200904028.htmBAI Rong. Operation timing of metro reserve train in operation adjustment[J]. Railway Transportation and Economy, 2009, 31(4): 71-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS200904028.htm [16] 王莉, 秦勇, 徐杰, 等. 突发事件条件下的铁路行车组织[J]. 东南大学学报(自然科学版), 2013, 43(增1): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2013S1004.htmWANG Li, QIN Yong, XU Jie, et al. Train operation in railway emergency[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(S1): 12-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2013S1004.htm [17] GAO Yuan, YANG Li-xing, GAO Zi-you. Energy consumption and travel time analysis for metro lines with express/local mode[J]. Transportation Research Part D: Transport and Environment, 2018, 60: 7-27. doi: 10.1016/j.trd.2016.10.009 [18] 代存杰, 李引珍, 马昌喜, 等. 时间依赖需求下多车型快速公交发车频率优化[J]. 交通运输工程学报, 2017, 17(1): 129-139. http://jtysgcxb.xml-journal.net/article/id/201701015DAI Cun-jie, LI Yin-zhen, MA Chang-xi, et al. Optimization of departure frequency for bus rapid transit with multi-type vehicles under time-dependent demand[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 129-139. (in Chinese) http://jtysgcxb.xml-journal.net/article/id/201701015 [19] 石俊刚, 杨静, 周峰, 等. 地铁快慢车运行计划综合优化模型[J]. 交通运输工程学报, 2018, 18(1): 130-138. http://jtysgcxb.xml-journal.net/article/id/201801012SHI Jun-gang, YANG Jing, ZHOU Feng, et al. Integrate optimization model of operation schedule for metro express/local train[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 130-138. (in Chinese). http://jtysgcxb.xml-journal.net/article/id/201801012 [20] BARRENA E, CANCA D, COELHO L C, et al. Single-line rail rapid transit timetabling under dynamic passenger demand[J]. Transportation Research Part B: Methodological, 2014, 70: 134-150. doi: 10.1016/j.trb.2014.08.013 [21] FOUILHOUX P, IBARRA-ROJAS O J, KEDAD-SIDHOUM S, et al. Valid inequalities for the synchronization bus timetabling problem[J]. European Journal of Operational Research, 2016, 251(2): 442-450. [22] SHI Jun-gang, YANG Li-xing, YANG Jing, et al. Service-oriented train timetabling with collaborative passenger flow control on an oversaturated metro line: an integer linear optimization approach[J]. Transportation Research Part B: Methodological, 2018, 110: 26-59. [23] JIANG Man, LI Hai-ying, XU Xin-yue, et al. Metro passenger flow control with station-to-station cooperation based on stop-skipping and boarding limiting[J]. Journal of Central South University, 2017, 24(1): 236-244. [24] WANG Yi-hui, NING Bin, TANG Tao, et al. Efficient real-time train scheduling for urban rail transit systems using iterative convex programming[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(6): 3337-3352. [25] 曹源, 温佳坤, 马连川. 重大疫情下的列车动态编组与调度[J]. 交通运输工程学报, 2020, 20(3): 120-128. doi: 10.19818/j.cnki.1671-1637.2020.03.011CAO Yuan, WEN Jia-kun, MA Lian-chuan. Dynamic marshalling and scheduling of trains in major epidemics[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 120-128. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.03.011 [26] 董佳宁, 倪少权, 陈钉均. 基于改进TOPSIS法的城轨列车运行图应急调整决策研究[J]. 中国铁路, 2020(1): 65-72. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202001015.htmDONG Jia-ning, NI Shao-quan, CHEN Ding-jun. Train working diagram adjustment decision of urban rail transit based on improved TOPSIS[J]. China Railway, 2020(1): 65-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202001015.htm [27] 徐瑞华, 刘峰博, 范围. 基于换乘运力协调的地铁列车运行调整策略[J]. 交通运输系统工程与信息, 2017, 17(6): 164-170. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201706024.htmXU Rui-hua, LIU Feng-bo, FAN Wei. Train operation adjustment strategies in metro based on transfer capacity coordination[J]. Journal of Transportation System Engineering and Information Technology, 2017, 17(6): 164-170. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201706024.htm [28] LENG Nuan-nuan, LIAO Zheng-wen, CORMAN F. Role of timetable, rolling stock rescheduling, and information strategies to passengers in public transport disruptions[J]. Transportation Research Record, 2020, 2674: 135-147. [29] YANG Li-xing, DI Zhen, DESSOUKY M M, et al. Collaborative optimization of last-train timetables with accessibility: a space-time network design based approach[J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 572-597. [30] 邓亚娟, 茹小磊, 梁国华, 等. 城市轨道交通应急接驳公交蓄车点选址[J]. 交通运输工程学报, 2018, 18(4): 143-150. http://jtysgcxb.xml-journal.net/article/id/201804015DENG Ya-juan, RU Xiao-lei, LIANG Guo-hua, et al. Depot location for emergency bridging buses in urban rail transit[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 143-150. (in Chinese) http://jtysgcxb.xml-journal.net/article/id/201804015 -