Adaptive optimal energy management strategy of fuel cell vehicle by considering fuel cell performance degradation
-
摘要: 为了提高系统效率与降低因不利运行条件导致的燃料电池使用寿命缩短风险,提出了考虑燃料电池性能衰退的自适应庞特里亚金极小值原理(PMP)能量管理策略,用于城市公交车燃料电池/超级电容混合动力系统;分析了离线式PMP燃料电池/超级电容混合动力系统在5种不同循环工况下的能量分配结果,获取了在3种典型城市公交循环工况下初始协态变量随能量管理系统的状态量,即超级电容荷电状态始、末时刻差值的变化关系,插值出在线式PMP初始协态变量与荷电状态的对应关系,结合PMP正则方程计算每一时刻的协态变量,形成具有维持荷电状态稳定的在线PMP协态变量自适应更新方法;将影响燃料电池性能衰退的功率变化率、启停次数和最大功率作为约束条件,并在自适应PMP的成本函数中引入燃料电池功率变化率,获取满足约束条件且混合动力系统燃料经济性较好的能量管理策略;开展控制器硬件在环(HIL)仿真测试,验证该能量管理策略的实际应用效果。研究结果表明:在不同于确定协态变量的公交工况SC03和纽约城市循环(NYCC)工况下,自适应PMP末态荷电状态稳定在目标值附近,且与离线PMP相比,燃料经济性损失分别仅为1.27%和0.93%;在不同于确定协态变量和成本函数权重系数的运行工况即中国公交行驶循环(CBDC)综合测试工况下,该自适应优化能量管理策略可实现满足约束条件的能量分配,且燃料经济性保持为离线最优经济性的90.76%;在CBDC和纽伦堡公共汽车(NurembergR36)测试工况下,HIL仿真结果与数值仿真结果平均误差均小于5%。综上,该自适应优化能量管理策略考虑了燃料电池性能衰退,可实现混合动力系统的高效运行,具有长寿命使用潜力。Abstract: To improve system efficiency and reduce the risk of working life reduction caused by the adverse operation conditions of fuel cell, an adaptive Pontryagin's minimum principle (PMP) energy management strategy with the fuel cell performance degradation consideration was proposed for the fuel cell/supercapacitor hybrid power system in the city bus. The off-line PMP energy distributions of the fuel cell/supercapacitor hybrid power system in five different driving conditions were analyzed, and the relation between the initial value of the costate variable and the difference of state variable of the energy management system, i.e., the state-of-charge difference of the supercapacitor, between the beginning and the end, was obtained. The corresponding relation between the initial value of the costate for online PMP and state-of-charge could be interpolated. Integrating with the normal equation of the PMP, the instant costate variable was obtained, and thus the adaptively updating costate variable in the online PMP leading to keep up state-of-charge could be formulated. Choosing the fuel cell performance degradation, the power change rate, number of start-stop, and maximal power of the fuel cell as the constraints of the energy management system, the fuel cell power change rate was further formulated as a penalty term in the cost function of the adaptive PMP to meet the energy management constraints as well as achieve better fuel economy. The controller hardware-in-the-loop (HIL) simulation test was carried out to validate the practical efficacy of the proposed energy management strategy.Research results show that, under the bus condition SC03 and New York City cycle condition (NYCC) that are different from the costate variable formulation used typical operation conditions, the adaptive PMP energy management can make the terminal state-of-charge approach the target value, and compared with the off-line PMP, the losses of fuel economy are only 1.27% and 0.94%, respectively. Under the China bus driving cycle (CBDC) comprehensive test condition that is different from the operation conditions used for the costate determination and cost function weighting adjustment, the proposed adaptive optimal energy management strategy can implement the energy distributions of fuel cell and supercapacitor under the provided constraints, and the fuel economy can keep up 90.76% compared with the off-line optimization. Under the CBDC and NurembergR36 test conditions, the average errors between HIL and numerical simulations are less than 5%. Consequently, the proposed adaptive optimal energy management strategy considering the performance degradation of fuel cell can implement the high operation of the hybrid power system with the potential of a long working life. 9 tabs, 13 figs, 29 refs.
-
表 1 燃料电池城市公交车主要参数
Table 1. Main parameters of fuel cell city bus
整车整备质量/kg 12 000 载客人数 33 迎风面积/m2 6.06 传动系统效率/% 90 旋转质量换算系数 1.1 空气阻力系数 0.7 车轮半径/m 0.54 滚动阻力系数 0.012 最高车速/(km·h-1) 70 表 2 三种典型循环工况的特征参数
Table 2. Characteristic parameters of three typical driving cycles
典型循环工况 总时间/s 平均车速/(km·h-1) 平均加速度/(m·s-2) 停车次数 CBDBUS 574 12.55 0.28 14 NewYorkBus 600 3.68 0.19 11 NurembergR36 1 089 8.91 0.25 23 表 3 自适应式和离线式PMP仿真条件
Table 3. Adaptive and offline PMP simulation conditions
S(t0) ε Smax Smin PFC_maxlimit/kW 0.700 0.05 0.950 0.500 90.0 表 4 燃料电池/超级电容混合动力系统自适应式与离线式PMP能量分配结果
Table 4. Adaptive and offline PMP energy distribution results of fuel cell/supercapacitor hybrid power system
工况 能量管理策略 混合动力系统等效氢耗/g 末态荷电状态 最大荷电状态 最小荷电状态 最高运行功率/kW SC03 在线式PMP 71.63 0.713 0.801 0.688 90.0 离线式PMP 70.53 0.704 0.793 0.685 90.0 NYCC 在线式PMP 29.22 0.730 0.730 0.703 90.0 离线式PMP 28.95 0.684 0.704 0.652 90.0 表 5 考虑燃料电池性能衰退的能量管理约束
Table 5. Energy management constraints by considering fuel cell performance degradation
参数名称 运行条件描述 数值 功率变化率Δ PFC/(kW·s-1) 剧烈的动态加载工况下,易造成氧饥饿,导致质子交换膜受损,加速燃料电池性能衰退[26],通常限制功率变化率在最大净功率的2%~20%之间[24]。 7.50 每小时启停次数nos 燃料电池启动和停机过程所形成的氧气空气界面是引起性能衰减和耐久性恶化的重要因素[27]。燃料电池在实际车况下寿命须达到5 000 h,在这期间能承受30 000次启停循环和300 000次负载周期循环[28]。计燃料电池有输出功率和0之间切换为一次启停,燃料电池冷启动不作为启停次数考虑范围内。 6 最高运行功率PFC_maxlimit/kW 燃料电池处于深功率放电状态时会导致大电流超载输出,易造成质子交换膜破损和性能衰退,降低质子传导能力[29]。 90.0 表 6 CBDBUS工况下能量管理结果
Table 6. Energy management result under CBDBUS driving cycle
参数 α=0 α=1.0×10-11 α=7.0×10-9 nos 84 144 6 ΔPFC/(kW·s-1) [-36.25, 28.46] [18.63, 20.17] [-0.37, 0.48] PFC_max/kW 46.8 56.7 20.7 Meq/g 40.27 42.61 43.49 表 7 NewYorkBus工况下能量管理结果
Table 7. Energy management result under NewYorkBus driving cycle
参数 α=0 α=7.0×10-9 α=5.0×10-8 nos 66 18 6 ΔPFC/(kW·s-1) [-82.23, 72.02] [-0.63, 1.19] [-0.08, 0.26] PFC_max/kW 90.0 26.4 11.9 Meq/g 19.83 21.38 21.42 表 8 NurembergR36工况下能量管理结果
Table 8. Energy management result under NurembergR36 driving cycle
参数 α=0 α=9.5×10-9 nos 138 6 ΔPFC/(kW·s-1) [-80.42, 55.06] [-0.40, 0.63] PFC_max/kW 80.4 25.0 Meq/g 53.41 57.61 表 9 自适应优化能量管理策略仿真结果
Table 9. Simulation results of adaptive optimization energy management strategy
工况 启停次数/(次·h-1) 功率变化率/(kW·s-1) 最高运行功率/kW 混合动力系统等效氢耗/g 始末荷电状态差值 CBDBUS 0 [-0.100, 0.180] 19.1 43.66 -0.023 NewYorkBus 6 [-0.078, 0.260] 11.9 21.42 -0.005 NurembergR36 0 [-0.085, 0.150] 12.4 57.71 0.007 -
[1] 王骞, 李顶根, 苗华春. 基于模糊逻辑控制的燃料电池汽车能量管理控制策略研究[J]. 汽车工程, 2019, 41(12): 1347-1355. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201912001.htmWANG Qian, LI Ding-gen, MIAO Hua-chun. Research on energy management strategy of fuel cell vehicle based on fuzzy logic control[J]. Automotive Engineering, 2019, 41(12): 1347-1355. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201912001.htm [2] TENG Teng, ZHANG Xin, DONG Han, et al. A comprehensive review of energy management optimization strategies for fuel cell passenger vehicle[J]. International Journal of Hydrogen Energy, 2020, 45(39): 20293-20303. doi: 10.1016/j.ijhydene.2019.12.202 [3] LYU Xue-qin, QU Yan, WANG Yu-dong, et al. A comprehensive review on hybrid power system for PEMFC-HEV: issues and strategies[J]. Energy Conversion and Management, 2018, 171: 1273-1291. doi: 10.1016/j.enconman.2018.06.065 [4] SULAIMAN N, HANNAN M A, MOHAMED A, et al. A review on energy management system for fuel cell hybrid electric vehicle: issues and challenges[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 802-814. doi: 10.1016/j.rser.2015.07.132 [5] ZHANG Ri-dong, TAO Ji-li, ZHOU Hui-yu. Fuzzy optimal energy management for fuel cell and supercapacitor systems using neural network based driving pattern recognition[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(1): 45-57. doi: 10.1109/TFUZZ.2018.2856086 [6] WANG Yu-jie, SUN Zhen-dong, CHEN Zong-hai. Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine[J]. Applied Energy, 2019, 254: 113707. doi: 10.1016/j.apenergy.2019.113707 [7] MEBARKI N, REKIOUA T, MOKRANI Z, et al. PEM fuel cell/battery storage system supplying electric vehicle[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20993-21005. doi: 10.1016/j.ijhydene.2016.05.208 [8] 雷霄, 戴朝华, 陈维荣, 等. 基于ADVISOR的燃料电池混合动力机车建模与仿真[J]. 电源技术, 2015, 39(12): 2643-2646. doi: 10.3969/j.issn.1002-087X.2015.12.025LEI Xiao, DAI Chao-hua, CHEN Wei-rong, et al. Dynamic modeling and simulation of fuel cell hybrid locomotives based on ADVISOR[J]. Chinese Journal of Power Sources, 2015, 39(12): 2643-2646. (in Chinese) doi: 10.3969/j.issn.1002-087X.2015.12.025 [9] LYU Xue-qin, WU Yin-bo, LIAN Jie, et al. Energy management of hybrid electric vehicles: a review of energy optimization of fuel cell hybrid power system based on genetic algorithm[J]. Energy Conversion and Management, 2020, 205: 112474. doi: 10.1016/j.enconman.2020.112474 [10] ZHOU Wei, YANG Lin, CAI Yi-shan, et al. Dynamic programming for new energy vehicles based on their work modes Part Ⅱ: fuel cell electric vehicles[J]. Journal of Power Sources, 2018, 407: 92-104. doi: 10.1016/j.jpowsour.2018.10.048 [11] SHI De-hua, LIU Sheng, CAI Ying-feng, et al. Pontryagin's minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information[J]. Applied Energy, 2021, 286: 116467. doi: 10.1016/j.apenergy.2021.116467 [12] LI Xi-yun, WANG Yu-jie, YANG Duo, et al. Adaptive energy management strategy for fuel cell/battery hybrid vehicles using Pontryagin's minimal principle[J]. Journal of Power Sources, 2019, 440: 227105. doi: 10.1016/j.jpowsour.2019.227105 [13] SONG Ke, WANG Xiao-di, LI Fei-qiang, et al. Pontryagin's minimum principle-based real-time energy management strategy for fuel cell hybrid electric vehicle considering both fuel economy and power source durability[J]. Energy, 2020, 205: 118064. doi: 10.1016/j.energy.2020.118064 [14] GAO Hui-zhong, WANG Zhi-jie, YIN Shao-ping, et al. Adaptive real-time optimal energy management strategy based on equivalent factors optimization for hybrid fuel cell system[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4329-4338. doi: 10.1016/j.ijhydene.2020.10.205 [15] ZHOU Yang, LI Han, RAVEY A, et al. An integrated predictive energy management for light-duty range-extended plug-in fuel cell electric vehicle[J]. Journal of Power Sources, 2020, 451: 227780. doi: 10.1016/j.jpowsour.2020.227780 [16] XU Liang-fei, OUYANG Ming-gao, LI Jian-qiu, et al. Application of Pontryagin's minimal principle to the energy management strategy of plugin fuel cell electric vehicles[J]. International Journal of Hydrogen Energy, 2013, 38(24): 10104-10115. doi: 10.1016/j.ijhydene.2013.05.125 [17] 王哲, 谢怡, 臧鹏飞, 等. 基于极小值原理的燃料电池客车能量管理策略[J]. 吉林大学学报(工学版), 2020, 50(1): 36-43. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202001004.htmWANG Zhe, XIE Yi, ZANG Peng-fei, et al. Energy management strategy of fuel cell bus based on Pontryagin's minimum principle[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 36-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202001004.htm [18] 杜泽学. 车用燃料电池关键材料技术研发应用进展[J]. 化工进展, 2021, 40(1): 6-20. doi: 10.3969/j.issn.1009-8348.2021.01.002DU Ze-xue. Application advances of manufacturing technology for key materials of vehicle fuel cell stack[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 6-20. (in Chinese) doi: 10.3969/j.issn.1009-8348.2021.01.002 [19] SONG Ke, CHEN Huan, WEN Pei-min, et al. A comprehensive evaluation framework to evaluate energy management strategies of fuel cell electric vehicles[J]. Electrochimica Acta, 2018, 292: 960-973. doi: 10.1016/j.electacta.2018.09.166 [20] WANG Y X, OU K, KIM Y B. Power source protection method for hybrid polymer electrolyte membrane fuel cell/lithium-ion battery system[J]. Renewable Energy, 2017, 111: 381-391. doi: 10.1016/j.renene.2017.03.088 [21] LIU Yong-gang, LIU Jun-jun, ZHANG Yuan-jian, et al. Rule learning based energy management strategy of fuel cell hybrid vehicles considering multi-objective optimization[J]. Energy, 2020, 207: 118212. doi: 10.1016/j.energy.2020.118212 [22] AHMADI S, BATHAEE S M T, HOSSEINPOUR A H. Improving fuel economy and performance of a fuel-cell hybrid electric vehicle (fuel-cell, battery, and ultra-capacitor) using optimized energy management strategy[J]. Energy Conversion and Management, 2018, 160: 74-84. doi: 10.1016/j.enconman.2018.01.020 [23] LI Tian-yu, LIU Hui-ying, WANG Hui, et al. Hierarchical predictive control-based economic energy management for fuel cell hybrid construction vehicles[J]. Energy, 2020, 198: 117327. doi: 10.1016/j.energy.2020.117327 [24] CARIGNANO M G, COSTA-CASTELLÓ R, RODA V, et al. Energy management strategy for fuel cell-supercapacitor hybrid vehicles based on prediction of energy demand[J]. Journal of Power Sources, 2017, 360: 419-433. doi: 10.1016/j.jpowsour.2017.06.016 [25] 苏波, 李奇, 王天宏, 等. 城轨交通用燃料电池/超级电容混合动力系统瞬时等效最小氢耗硬件在环方法研究[J]. 中国电机工程学报, 2019, 39(19): 5714-5723, 5899. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201919016.htmSU Bo, LI Qi, WANG Tian-hong, et al. Research on hardware-in-the-loop methods for instantaneous equivalent minimum hydrogen consumption of fuel cell/ultracapacitor hybrid systems for urban rail transit[J]. Proceedings of the CSEE, 2019, 39(19): 5714-5723, 5899. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201919016.htm [26] PEI Pu-cheng, CHANG Qian-fei, TANG Tian. A quick evaluating method for automotive fuel cell lifetime[J]. International Journal of Hydrogen Energy, 2008, 33(14): 3829-3836. doi: 10.1016/j.ijhydene.2008.04.048 [27] 余意. 频繁启停对质子交换膜燃料电池堆性能的影响[J]. 电池, 2015, 45(2): 74-77. doi: 10.3969/j.issn.1001-1579.2015.02.005YU Yi. Performance decay of PEMFC stack after startup-shutdown cycles[J]. Battery Bimonthly, 2015, 45(2): 74-77. (in Chinese) doi: 10.3969/j.issn.1001-1579.2015.02.005 [28] 王诚, 王树博, 张剑波, 等. 车用燃料电池耐久性研究[J]. 化学进展, 2015, 27(4): 424-435. https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201504010.htmWANG Cheng, WANG Shu-bo, ZHANG Jian-bo, et al. The durability research on the proton exchange membrane fuel cell for automobile application[J]. Progress in Chemistry, 2015, 27(4): 424-435. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HXJZ201504010.htm [29] 张新丰, 杨代军, 周拓. 车用燃料电池系统的性能衰退机理及影响因素分析[J]. 汽车安全与节能学报, 2012, 3(3): 276-286. doi: 10.3969/j.issn.1676-8484.2012.03.011ZHANG Xin-feng, YANG Dai-jun, ZHOU Tuo. Review on degradation mechanism and in fluence factors for vehicular fuel cell systems[J]. Journal of Automotive Safety and Energy, 2012, 3(3): 276-286. (in Chinese) doi: 10.3969/j.issn.1676-8484.2012.03.011 -