留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于随机价格时间博弈的列车队列稳定性模型验证与控制策略优化

卢万里 吕继东 高金金 柴铭 刘宏杰 唐涛 李丹勇 宋栋良

卢万里, 吕继东, 高金金, 柴铭, 刘宏杰, 唐涛, 李丹勇, 宋栋良. 基于随机价格时间博弈的列车队列稳定性模型验证与控制策略优化[J]. 交通运输工程学报, 2023, 23(2): 273-286. doi: 10.19818/j.cnki.1671-1637.2023.02.020
引用本文: 卢万里, 吕继东, 高金金, 柴铭, 刘宏杰, 唐涛, 李丹勇, 宋栋良. 基于随机价格时间博弈的列车队列稳定性模型验证与控制策略优化[J]. 交通运输工程学报, 2023, 23(2): 273-286. doi: 10.19818/j.cnki.1671-1637.2023.02.020
LU Wan-li, LYU Ji-dong, GAO Jin-jin, CHAI Ming, LIU Hong-jie, TANG Tao, LI Dan-yong, SONG Dong-liang. Stability model verification and control strategy optimization of train platoon based on stochastic priced timed game[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 273-286. doi: 10.19818/j.cnki.1671-1637.2023.02.020
Citation: LU Wan-li, LYU Ji-dong, GAO Jin-jin, CHAI Ming, LIU Hong-jie, TANG Tao, LI Dan-yong, SONG Dong-liang. Stability model verification and control strategy optimization of train platoon based on stochastic priced timed game[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 273-286. doi: 10.19818/j.cnki.1671-1637.2023.02.020

基于随机价格时间博弈的列车队列稳定性模型验证与控制策略优化

doi: 10.19818/j.cnki.1671-1637.2023.02.020
基金项目: 

国家自然科学基金项目 52272329

中央高校基本科研业务费专项资金项目 2022JBXT000

中央高校基本科研业务费专项资金项目 2021YJS018

中央高校基本科研业务费专项资金项目 2019JBM009

北京市自然科学基金项目 L211019

北京市自然科学基金项目 L201004

北京市自然科学基金项目 L181005

中国国家铁路集团有限公司科技研究开发计划 L2021G003

详细信息
    作者简介:

    卢万里(1996-), 男, 甘肃兰州人, 北京交通大学工学博士研究生, 从事交通信息工程及控制研究. luwanli@bjtu.edu.cn

    吕继东(1981G), 男, 河北廊坊人, 北京交通大学教授, 工学博士.jdlv@bjtu.edu.cn

  • 中图分类号: U283.1

Stability model verification and control strategy optimization of train platoon based on stochastic priced timed game

Funds: 

National Natural Science Foundation of China 52272329

Fundamental Research Funds for the Central Universities 2022JBXT000

Fundamental Research Funds for the Central Universities 2021YJS018

Fundamental Research Funds for the Central Universities 2019JBM009

Natural Science Foundation of Beijing L211019

Natural Science Foundation of Beijing L201004

Natural Science Foundation of Beijing L181005

Science and Technology Research and Development Project of China State Railway Group Co., Ltd. L2021G003

More Information
  • 摘要: 为保证列车队列运行安全并提高队列稳定性,研究了列车队列稳定性模型验证与控制策略优化问题;基于车-车通信的列车队列采用等空间间隔、等时间间隔和变时距3种控制策略,利用随机价格时间博弈自动机,建立了包含领航列车和跟随列车的队列控制模型,分析了模型的队列稳定性;在保证列车运行安全的前提下,以列车的相对位置差、相对速度差和时间间隔差为成本函数,通过队列随机价格时间博弈自动机模型获得控制策略集;利用Q-Learning方法得到队列的最优驾驶策略,验证队列运行的安全性和稳定性;结合列车运行追踪场景,进行队列的稳定性分析。仿真结果表明:通过形式化验证,采用3种控制策略下的队列安全性得到了保证;通过随机价格时间博弈控制、协方差优化控制和Q-Learning方法对比PID控制,等空间间隔策略下的队列稳定性误差最大值分别减小到了0.19%、0.18%和0.11%,等时间间距策略下的队列稳定性误差最大值分别减小到了30.21%、10.34%和9.24%,变时距策略下队列稳定性误差最大值分别为118.27%、56.09%和39.67%,可见,采用Q-Learning方法的随机价格时间博弈理论能在安全前提下提高列车队列稳定性。

     

  • 图  1  车队通信拓扑结构与列车控制器

    Figure  1.  Train platoon communication topology structure and train controllers

    图  2  控制策略提取

    Figure  2.  Control strategy extraction

    图  3  控制策略优化算法

    Figure  3.  Control strategy optimal algorithm

    图  4  Q-Learning算法

    Figure  4.  Q-Learning algorithm

    图  5  列车动作模型

    Figure  5.  Train action model

    图  6  列车速度控制模型

    Figure  6.  Control model of train speed

    图  7  列车参数计算模型

    Figure  7.  Calculation model of train parameters

    图  8  控制策略目标值计算模型

    Figure  8.  Calculation model of control strategies objective value

    图  9  运行速度曲线

    Figure  9.  Operation speed curves

    图  10  两车追踪稳定性

    Figure  10.  Tracking stability of two trains

    图  11  等空间间隔控制策略下速度曲线

    Figure  11.  Speed curves based on constant distance interval control strategy

    图  12  等空间间隔控制策略下稳定性曲线

    Figure  12.  Stability curves based on constant distance interval control strategy

    图  13  等时间间隔控制策略下速度曲线

    Figure  13.  Speed curves based on constant time interval control strategy

    图  14  等时间间隔控制策略下稳定性曲线

    Figure  14.  Stability curves based on constant time interval control strategy

    图  15  变时距控制策略下速度曲线

    Figure  15.  Speed curves based on variable time interval control strategy

    图  16  变时距控制策略下稳定性曲线

    Figure  16.  Stability curves based on variable time interval control strategy

    表  1  各控制策略参数

    Table  1.   Parameters for each control strategy

    控制策略 ji fi
    固定空间间隔控制策略 $ \frac{k}{m} $ $ \frac{c}{m} $
    固定时间间隔控制策略 $ \frac{k}{m} $ $ \frac{c+k h}{m} $
    可变时距控制策略 $ \frac{k}{m} $ $ \frac{c+k \bar{v}}{m} $
    下载: 导出CSV

    表  2  PID控制参数选取

    Table  2.   Selection of PID control parameters

    策略 列车 KP KI KD
    等时间间隔控制策略 1 0.040 0.000 20 0.201
    2 0.040 0.000 10 0.150
    3 0.030 0.000 10 0.101
    等空间间隔控制策略 1 0.045 0.000 21 0.101
    2 0.040 0.000 20 0.140
    3 0.025 0.000 20 0.101
    变时距控制策略 1 0.004 0.000 10 0.150
    2 0.003 0.001 50 0.015
    3 0.030 0.005 00 0.010
    下载: 导出CSV

    表  3  等空间间隔控制策略稳定性分析

    Table  3.   Stability analysis based on constant distance interval control strategy

    控制方式 稳定性误差最大值/10-3 方差
    z1 z2 z1 z2
    PID控制 790.00 300.00 2.14×10-1 7.10×10-2
    随机运行控制 1.48 1.54 4.42×10-7 2.58×10-7
    Q-Learning优化 0.90 0.59 7.60×10-8 3.00×10-9
    协方差优化 1.45 1.13 1.01×10-7 4.90×10-8
    下载: 导出CSV

    表  4  等时间间隔控制策略稳定性分析

    Table  4.   Stability analysis based on constant time interval control strategy

    控制方式 稳定性误差最大值/10-3 方差
    z1 z2 z1 z2
    分子 分母 分子 分母
    PID控制 14.50 4.25 1 543.82 11 632 348.48 125.85 12 813 639.57
    随机运行控制 4.38 2.88 6.94 11 777 769.37 3.97 11 779 156.60
    Q-Learning优化 1.34 1.05 1.71 12 096 770.22 0.92 12 097 122.82
    协方差优化 1.50 1.18 2.00 12 090 529.36 1.05 12 092 098.93
    下载: 导出CSV

    表  5  变时距控制策略稳定性分析

    Table  5.   Stability analysis based on variable time interval control strategy

    控制方式 稳定性误差最大值 方差
    z1 z2 z1 z2
    PID控制 7.06 2.88 1.171 0.005
    随机运行控制 8.35 6.12 3.629 1.944
    Q-Learning优化 2.80 2.12 0.648 0.389
    协方差优化 3.96 2.95 0.907 0.518
    下载: 导出CSV
  • [1] 《铁道技术监督》编辑部. 新时代交通强国铁路先行规划纲要[J]. 铁道技术监督, 2020, 48(9): 1-6, 24. doi: 10.3969/j.issn.1006-9178.2020.09.001

    Editorial Department of Railway Quality Control. Outline of powerful nation railway advance planning in the new era[J]. Railway Quality Control, 2020, 48(9): 1-6, 24. (in Chinese) doi: 10.3969/j.issn.1006-9178.2020.09.001
    [2] 张宏强. 移动闭塞条件下高速列车追踪运行控制算法研究[D]. 兰州: 兰州交通大学, 2020.

    ZHANG Hong-qiang. Research on control algorithm for tracking operation of high-speed trains under moving block[D]. Lanzhou: Lanzhou Jiaotong University, 2020. (in Chinese)
    [3] FLAMMINI F, MARRONE S, NARDONE R, et al. Towards railway virtual coupling[C]//IEEE. 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles and International Transportation Electrification Conference (ESARS-ITEC). New York: IEEE, 2018: 1-6.
    [4] DI MEO C, DI VAIO M, FLAMMINI F, et al. ERTMS/ETCS virtual coupling: proof of concept and numerical analysis[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(6): 2545-2556. doi: 10.1109/TITS.2019.2920290
    [5] 崔俊锋, 刘岭. 虚拟耦合在列控系统应用的关键技术需求研究[J]. 铁路通信信号工程技术, 2019, 16(10): 1-5. doi: 10.3969/j.issn.1673-4440.2019.10.001

    CUI Jun-feng, LIU Ling. Research on key technology requirements of virtual coupling in application of train control system[J]. Railway Signalling and Communication Engineering, 2019, 16(10): 1-5. (in Chinese) doi: 10.3969/j.issn.1673-4440.2019.10.001
    [6] LEI L, LU J H, JIANG Y M, et al. Stochastic delay analysis for train control services in next-generation high-speed railway communications system[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(1): 48-64. doi: 10.1109/TITS.2015.2450751
    [7] MANDUCHI G, LUCHETTA A, SOPPELSA A, et al. From distributed to multicore architecture in the RFX-mod real time control system[J]. Fusion Engineering and Design, 2014, 89(3): 224-232. doi: 10.1016/j.fusengdes.2013.07.002
    [8] GURNÍK P. Next generation train control (NGTC): more effective railways through the convergence of main-line and urban train control systems[J]. Transportation Research Procedia, 2016, 14: 1855-1864. doi: 10.1016/j.trpro.2016.05.152
    [9] 陈明亮, 宁滨, 荀径, 等. 列车编队运行队列稳定性分析[C]// 中国自动化学会控制理论专业委员会. 第三十八届中国控制会议论文集. 北京: 中国自动化学会控制理论专业委员会, 2019: 234-239.

    CHEN Ming-liang, NING Bin, XUN Jing, et al. Platoon stability analysis of train formation[C]//Technical Committee on Control Theory, Chinese Association Automation. Proceedings of the 38th Chinese Control Conference. Beijing: Technical Committee on Control Theory, Chinese Association Automation, 2019: 234-239. (in Chinese)
    [10] DONG H R, GAO S G, NING B. Cooperative control synthesis and stability analysis of multiple trains under moving signaling systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2730-2738. doi: 10.1109/TITS.2016.2518649
    [11] WANG M, LI H H, GAO J, et al. String stability of heterogeneous platoons with non-connected automated vehicles[C]//IEEE. 2017 IEEE 20th International Conference on Intelligent Transportation Systems. New York: IEEE, 2017: 1-8.
    [12] GAO S G, DONG H R, NING B, et al. Cooperative adaptive bidirectional control of a train platoon for efficient utility and string stability[J]. Chinese Physics B, 2015, 24(9): 090506. doi: 10.1088/1674-1056/24/9/090506
    [13] RASHID A, SIDDIQUE U, HASAN O. Formal verification of platoon control strategies[C]//Springer. 16th International Conference on Software Engineering and Formal Methods. Berlin: Springer, 2018: 223-238.
    [14] 吕继东. 列车运行控制系统分层形式化建模与验证分析[D]. 北京: 北京交通大学, 2011.

    LYU Ji-dong. Hierarchical formal modeling and verification traincontrol system[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese)
    [15] 张锦坤, 杨孟飞, 乔磊, 等. 基于有限状态机的操作系统需求层形式化验证[J]. 空间控制技术与应用, 2019, 45(2): 48-55. doi: 10.3969/j.issn.1674-1579.2019.02.007

    ZHANG Jin-kun, YANG Meng-fei, QIAO Lei, et al. Formal verification of operating system requirements layer based on finite state machine[J]. Aerospace Control and Application, 2019, 45(2): 48-55. (in Chinese) doi: 10.3969/j.issn.1674-1579.2019.02.007
    [16] BACCI G, BOUYER P, FAHRENBERG U, et al. Optimal and robust controller synthesis using energy timed automata with uncertainty[J]. Formal Aspects of Computing, 2021, 33(1): 3-25. doi: 10.1007/s00165-020-00521-4
    [17] FAN C C, QIN Z Y, MATHUR U, et al. Controller synthesis for linear system with reach-avoid specifications[J]. IEEE Transactions on Automatic Control, 2022, 67(4): 1713-1727. doi: 10.1109/TAC.2021.3069723
    [18] HAI Xing-shuo, WANG Zi-li, FENG Qiang, et al. A novel adaptive pigeon-inspired optimization algorithm based on evolutionary game theory[J]. Science China Information Sciences, 2021, 64(3): 1-2.
    [19] ABDOOS M. A cooperative multiagent system for traffic signal control using game theory and reinforcement learning[J]. IEEE Intelligent Transportation Systems Magazine, 2021, 13(4): 6-16. doi: 10.1109/MITS.2020.2990189
    [20] 曹源, 唐涛, 徐田华, 等. 形式化方法在列车运行控制系统中的应用[J]. 交通运输工程学报, 2010, 10(1): 112-126. doi: 10.3969/j.issn.1671-1637.2010.01.020

    CAO Yuan, TANG Tao, XU Tian-hua, et al. Application of formal methods in train control system[J]. Journal of Traffic and Transportation Engineering, 2010, 10(1): 112-126. (in Chinese) doi: 10.3969/j.issn.1671-1637.2010.01.020
    [21] PENG G H, SUN D H. A dynamical model of car-following with the consideration of the multiple information of preceding cars[J]. Physics Letters A, 2010, 374(15/16): 1694-1698.
    [22] JIANG R, HU M B, ZHANG H M, et al. On some experimental features of car-following behavior and how to model them[J]. Transportation Research Part B: Methodological, 2015, 80: 338-354. doi: 10.1016/j.trb.2015.08.003
    [23] 王鹏, 李开成, 刘雨. 车车通信技术在列控系统中的应用研究[J]. 铁道通信信号, 2016, 52(7): 62-65.

    WANG Peng, LI Kai-cheng, LIU Yu. Application research of train-train communication technology in train control system[J]. Railway Signalling and Communication, 2016, 52(7): 62-65. (in Chinese)
    [24] 靳东明, 李博. 基于车-车通信的列车运行控制系统中的移动授权计算分析[J]. 电脑知识与技术, 2018, 14(1): 259-263. https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS201801112.htm

    JIN Dong-ming, LI Bo. Analysis of movement authority calculation for train operation control system based on vehicle to vehicle communication[J]. Computer Knowledge and Technology, 2018, 14(1): 259-263. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS201801112.htm
    [25] 荀径, 陈明亮, 宁滨, 等. 虚拟重联条件下地铁列车追踪运行性能衡量[J]. 北京交通大学学报, 2019, 43(1): 96-103.

    XUN Jing, CHEN Ming-liang, NING Bin, et al. Train tracking performance measurement under virtual coupling in subway[J]. Journal of Beijing Jiaotong University, 2019, 43(1): 96-103. (in Chinese)
    [26] ZHU L, HE Y, YU F R, et al. Communication-based train control system performance optimization using deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2017, 12(66): 10705-10717.
    [27] GOODARZI E V, HOUSHMAND M, VALILAI O F, et al. Manufacturing cloud service composition based on the non-cooperative and cooperative game theory[C]//IEEE. 2020 IEEE International Conference on Industrial Engineering and Engineering Management. New York: IEEE, 2020: 1122-1125.
    [28] LI Jia-lin, DONG Ping. A dynamic adaptation mechanism of network resource based on fuzzy Q-Learning in high-speed mobile environment[C]//IEEE. Proceedings of 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference. New York: IEEE, 2020: 1079-1083.
    [29] WANG Ye-zheng, WANG Zi-dong, ZOU Lei, et al. HPID control for discrete-time fuzzy systems with infinite- distributed delays under round-robin communication protocol[J]. IEEE Transactions on Fuzzy Systems, 2022, 30(6): 1875-1888. doi: 10.1109/TFUZZ.2021.3069329
    [30] DAVID A, JENSEN P G, LARSEN K G, et al. On time with minimal expected cost[J]. Lecture Notes in Computer Science, 2014, 8837: 129-145.
    [31] 康仁伟. 基于时间自动机的CTCS-3级列控系统建模方法与验证研究[D]. 北京: 北京交通大学, 2013.

    KANG Ren-wei. The research on modeling and verification of Chinese train control system level 3 based on timed automata[D]. Beijing: Beijing Jiaotong University, 2013. (in Chinese)
    [32] ALUR R, DILL D L. A theory of timed automata[J]. Theoretical Computer Science, 1994, 126(2): 183-235.
    [33] DAVID A, JENSEN P G, LARSEN K G, et al. Uppaal stratego[C]//Springer. 2015 International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Berlin: Springer, 2015: 206-211.
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  450
  • HTML全文浏览量:  240
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-29
  • 网络出版日期:  2023-05-09
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回