留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矩形截面型钢混凝土梁抗弯极限承载力

林上顺 暨邦冲 夏樟华 刘君平 林建凡 赵锦冰

林上顺, 暨邦冲, 夏樟华, 刘君平, 林建凡, 赵锦冰. 矩形截面型钢混凝土梁抗弯极限承载力[J]. 交通运输工程学报, 2024, 24(1): 146-157. doi: 10.19818/j.cnki.1671-1637.2024.01.009
引用本文: 林上顺, 暨邦冲, 夏樟华, 刘君平, 林建凡, 赵锦冰. 矩形截面型钢混凝土梁抗弯极限承载力[J]. 交通运输工程学报, 2024, 24(1): 146-157. doi: 10.19818/j.cnki.1671-1637.2024.01.009
LIN Shang-shun, JI Bang-chong, XIA Zhang-hua, LIU Jun-ping, LIN Jian-fan, ZHAO Jin-bing. Ultimate flexural capacity of steel reinforced concrete beams with rectangular section[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 146-157. doi: 10.19818/j.cnki.1671-1637.2024.01.009
Citation: LIN Shang-shun, JI Bang-chong, XIA Zhang-hua, LIU Jun-ping, LIN Jian-fan, ZHAO Jin-bing. Ultimate flexural capacity of steel reinforced concrete beams with rectangular section[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 146-157. doi: 10.19818/j.cnki.1671-1637.2024.01.009

矩形截面型钢混凝土梁抗弯极限承载力

doi: 10.19818/j.cnki.1671-1637.2024.01.009
基金项目: 

国家自然科学基金项目 52078136

福建省自然科学基金项目 2020J01477

福建省交通运输科技项目 202024

详细信息
    作者简介:

    林上顺(1972-),男,福建永泰人,福建理工大学教授,工学博士,从事桥梁结构设计理论、预制拼装桥梁研究

    通讯作者:

    夏樟华(1980-),男,浙江淳安人,福州大学研究员,工学博士

  • 中图分类号: U443.3

Ultimate flexural capacity of steel reinforced concrete beams with rectangular section

Funds: 

National Natural Science Foundation of China 52078136

Natural Science Foundation of Fujian Province 2020J01477

Transportation Science and Technology Project of Fujian Province 202024

More Information
Article Text (Baidu Translation)
  • 摘要:

    采用JGJ 138—2016、СИ 3-78、YB 9082—2006、AISC 360-16、叶列平公式,计算了所收集的51个矩形截面型钢混凝土(SRC)梁试件的抗弯极限承载力,并将计算结果与试验值进行比较;分析了所收集试件的参数范围及现有计算方法出现计算误差的原因,讨论了现有计算方法在计算理论等方面存在的局限性,并进行理论推导,提出了矩形截面SRC梁抗弯极限承载力计算方法;采用所提出的计算方法,计算了所收集试件的抗弯极限承载力。分析结果表明:现有计算方法的计算值与试验值均存在一些偏差;СИ 3-78中的受压区高度取值不合理,且该方法的计算误差随混凝土强度提高而增大;JGJ 138—2016未考虑中性轴与型钢位置的相对关系对计算结果的影响,存在局限性;YB 9082—2006与AISC 360-16未考虑型钢与混凝土相互作用及型钢的布置方式等问题;叶列平公式计算结果较为保守;采用提出的抗弯极限承载力计算方法得到的计算值与试件试验值的比值均值为0.953,方差为0.015,计算值与试验值吻合较好;所收集SRC梁试件的含钢率为1.77%~5.77%,小于YB 9082—2006所建议的合理含钢率范围,因此,今后还需进一步开展高含钢率试件的补充试验,以便完善矩形截面SRC梁的抗弯极限承载力计算方法。

     

  • 图  1  计算参数

    Figure  1.  Calculation parameters

    图  2  中性轴未穿过型钢

    Figure  2.  Neutral shaft not passing through structural steel

    图  3  中性轴穿过翼缘

    Figure  3.  Neutral shaft passing through flange

    图  4  本文方法计算流程

    Figure  4.  Calculation flow of proposed method

    图  5  试件参数

    Figure  5.  Parameters of specimens

    图  6  现有计算方法与本文计算方法的计算值与试验值之比

    Figure  6.  Ratios of calculated values to test values for existing calculation methods and proposed calculation methods

    图  7  JGJ 138—2016中型钢腹板的计算模型

    Figure  7.  Calculation model of structural steel web in JGJ 138—2016

    图  8  SRCB-2的型钢应变分布[12]

    Figure  8.  Structural steel strain distributions in SRCB-2[12]

    图  9  SB-2的型钢应变分布[10]

    Figure  9.  Structural steel strain distributions in SB-2[10]

    图  10  不同混凝土强度下СИ 3-78计算值与试验值之比

    Figure  10.  Ratios of calculated values to test values of СИ 3-78 for different concrete strengths

    表  1  试件详细参数

    Table  1.   Detailed parameters of specimens

    数据来源 试件编号 截面尺寸/mm 型钢 含钢率/% 受拉纵筋 f/MPa fy/MPa fcu/MPa
    文献[10] SB-1 220×320 H200×100×5.5×8,居中 3.71 2Φ18 331.00 366.92 50.63
    SB-2 220×400 H200×100×5.5×8,下偏40 mm 2.97 2Φ18 331.00 366.92 52.54
    文献[11] C7 180×250 H100×100×6×8,居中 4.68 2Φ12 270.00 552.00 33.00
    文献[12] SRCB-1 200×350 H200×100×5.5×8,上偏5 mm 3.73 2Φ14 305.00 365.00 50.60
    SRCB-2 200×350 H200×100×5.5×8,上偏25 mm 3.73 2Φ14 305.00 365.00 50.60
    SRCB-4 200×350 H200×100×5.5×8,上偏5 mm 3.73 2Φ20 305.00 390.00 50.60
    SRCB-5 200×350 H200×100×5.5×8,上偏5 mm 3.73 2Φ14 305.00 365.00 56.00
    SRCB-6 200×350 H200×100×5.5×8,上偏5 mm 3.73 2Φ14 305.00 365.00 66.20
    文献[13] SRCL2-100%-1 d 200×300 H150×100×6×9,居中 4.32 3Φ16 356.05 399.75 52.21
    SRCL4-100%-3 d 200×300 H150×100×6×9,居中 4.32 3Φ16 356.05 399.75 65.20
    SRCL6-100%-7 d 200×300 H150×100×6×9,居中 4.32 3Φ16 356.05 399.75 72.73
    SRCL7-100%-28 d 200×300 H150×100×6×9,居中 4.32 3Φ16 356.05 399.75 80.07
    SRCL8-100%-90 d 200×300 H150×100×6×9,居中 4.32 3Φ16 356.05 399.75 85.23
    文献[14] SL-1 200×250 I16,居中 5.17 2Φ10 340.60 348.10 21.36
    SRC-1 200×260 I16,居中 4.97 2Φ18 340.60 433.02 27.56
    SRCB-1a 200×200 I10,居中 3.54 2Φ12 365.00 401.00 30.10
    SRCB-2b 200×200 I10,居中 3.54 2Φ12 365.00 401.00 30.10
    SRCB-1b 200×250 I10,下偏50 mm 2.83 2Φ12 365.00 401.00 30.10
    SRCB-2b 200×250 I10,下偏50 mm 2.83 2Φ12 365.00 401.00 30.10
    SRCB-1c 200×300 I10,下偏100 mm 2.36 2Φ12 365.00 401.00 30.10
    SRCB-2c 200×300 I10,下偏100 mm 2.36 2Φ12 365.00 401.00 30.10
    SRCB-1d 200×350 I10,下偏150 mm 2.02 2Φ12 365.00 401.00 30.10
    SRCB-2d 200×350 I10,下偏150 mm 2.02 2Φ12 365.00 401.00 30.10
    BI-1 208×302 I20a,居中 5.60 2Φ16 280.00 256.00 24.30
    BI-2 207×299 I20a,居中 5.69 2Φ16 280.00 256.00 24.20
    BII-1 203×303 I20a,居中 5.72 2Φ12 280.00 435.00 22.50
    BII-2 206×296 I20a,居中 5.77 2Φ12 280.00 435.00 21.70
    文献[15] L1 200×400 I12,居中 1.77 2Φ16 315.00 360.00 47.20
    L1a 200×400 I12,居中 1.77 3Φ18 315.00 376.00 47.20
    L2 200×400 I20a,居中 4.90 2Φ16 315.00 360.00 47.20
    L2a 200×400 I20a,居中 4.90 3Φ18 315.00 376.00 47.20
    文献[16] 94 200×300 H200×100×6×6,居中 3.88 2Φ13 598.78 362.60 31.93
    95 200×300 H200×100×6×6,居中 3.88 2Φ16 598.78 380.24 31.33
    96 200×300 H200×100×6×6,居中 3.88 2Φ13 598.78 362.60 29.04
    97 200×300 H200×100×6×6,居中 3.88 2Φ16 598.78 380.24 31.81
    98 200×300 H200×100×6×9,居中 4.82 2Φ13 572.81 362.60 37.11
    99 200×300 H200×100×6×9,居中 4.82 2Φ16 572.81 380.24 37.83
    100 200×300 H200×100×6×9,居中 4.82 2Φ13 572.81 362.60 38.19
    101 200×300 H200×100×6×9,居中 4.82 2Φ16 572.81 380.24 37.83
    102 200×300 H100×100×6×6,居中 2.88 2Φ16 295.96 380.24 38.80
    103 200×300 H100×100×6×6,居中 2.88 2Φ16 798.70 380.24 39.04
    A1 200×300 H200×100×6×9,居中 4.82 2Φ10 572.81 364.56 37.35
    A2 200×300 H200×100×6×6,居中 3.88 2Φ16 598.78 373.38 36.87
    A3 200×300 H200×100×6×9,居中 4.82 2Φ16 572.81 373.38 41.08
    A4 200×300 H200×100×6×12,居中 5.76 2Φ16 584.57 373.38 42.89
    A5 200×300 H200×100×6×9,居中 4.82 2Φ16 572.81 373.38 44.70
    A6 200×300 H200×100×6×9,居中 4.82 2Φ16 296.45 373.38 37.23
    A7 200×300 H200×100×6×9,居中 4.82 2Φ16 471.87 373.38 43.86
    A8 200×300 H200×100×6×9,居中 4.82 2Φ16 820.26 373.38 44.58
    A9 200×300 H100×100×6×9,居中 3.82 2Φ10 572.81 364.56 45.30
    A10 200×300 H100×100×6×9,下偏50 mm 3.82 2Φ10 572.81 364.56 49.16
    下载: 导出CSV
  • [1] 叶列平, 方鄂华. 钢骨混凝土构件的受力性能研究综述[J]. 土木工程学报, 2000, 33(5): 1-12. doi: 10.3321/j.issn:1000-131X.2000.05.001

    YE Lie-ping, FANG E-hua. Review on mechanical performance of steel reinforced concrete[J]. China Civil Engineering Journal, 2000, 33(5): 1-12. (in Chinese) doi: 10.3321/j.issn:1000-131X.2000.05.001
    [2] IKEDA M. The trend of new technologies on SRC and CFT members in railway structures[J]. Concrete Journal, 2014, 52(1): 102-107. doi: 10.3151/coj.52.102
    [3] IKEDA M. Transition and future prospects of research and development of railway steel-concrete hybrid structures[J]. Journal of Japan Society of Civil Engineers Ser. A1 (Structural Engineering and Earthquake Engineering), 2022, 78(5): 1-18.
    [4] HONG W K, PARK S C, LEE H C, et al. Composite beam composed of steel and precast concrete (modularized hybrid system). Part Ⅲ: application for a 19-storey building[J]. The Structural Design of Tall and Special Buildings, 2010, DOI: 10.1002/tal.507.
    [5] HONG W K, PARK S C, KIM J M, et al. Composite beam composed of steel and precast concrete (modularized hybrid system, MHS). Part Ⅰ: experimental investigation[J]. The Structural Design of Tall and Special Buildings, 2008, DOI: 10.1002/tal.485.
    [6] HONG W K, KIM J M, PARK S C, et al. Composite beam composed of steel and pre-cast concrete. (modularized hybrid system, MHS). Part Ⅱ: analytical investigation[J]. The Structural Design of Tall and Special Buildings, 2008, DOI: 10.1002/tal.484.
    [7] TONG Le-wei, LIU Bo, XIAN Qing-jun, et al. Experimental study on fatigue behavior of steel reinforced concrete (SRC) beams[J]. Engineering Structures, 2016, 123: 247-262. doi: 10.1016/j.engstruct.2016.05.052
    [8] 王哲. 预制装配型钢混凝土梁疲劳性能试验研究[D]. 郑州: 河南工业大学, 2023.

    WANG Zhe. Experimental study on fatigue behavior of prefabricated steel reinforced concrete beams[D]. Zhengzhou: Henan University of Technology, 2023. (in Chinese)
    [9] 肖顺, 童乐为, 刘博, 等. 实腹式型钢混凝土梁疲劳破坏模式与机理研究[J]. 工程力学, 2021, 38(6): 237-245. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202106022.htm

    XIAO Shun, TONG Le-wei, LIU Bo, et al. Investigation on fatigue failure modes and mechanisms of steel reinforced concrete girders[J]. Engineering Mechanics, 2021, 38(6): 237-245. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202106022.htm
    [10] 李峰. 预应力钢骨混凝土梁承载能力试验研究[D]. 重庆: 重庆大学, 2007.

    LI Feng. Experimental research on the carrying capacity of the prestressed steel reinforced concrete beam[D]. Chongqing: Chongqing University, 2007. (in Chinese)
    [11] 范进, 沈银良, 张斌. 型钢混凝土梁受力性能试验研究[J]. 南京理工大学学报, 2006, 30(6): 709-713. doi: 10.3969/j.issn.1005-9830.2006.06.012

    FAN Jin, SHEN Yin-liang, ZHANG Bin. Expermental investigation on mechanical behavior of steel reinforced concrete beams[J]. Journal of Nanjing University of Science and Technology, 2006, 30(6): 709-713. (in Chinese) doi: 10.3969/j.issn.1005-9830.2006.06.012
    [12] 傅传国, 李玉莹, 梁书亭. 预应力型钢混凝土简支梁受弯性能试验研究[J]. 建筑结构学报, 2007, 28(3): 62-73. doi: 10.3321/j.issn:1000-6869.2007.03.009

    FU Chuan-guo, LI Yu-ying, LIANG Shu-ting. Experimental study on simply supported prestressed steel reinforced concrete beams[J]. Journal of Building Structures, 2007, 28(3): 62-73. (in Chinese) doi: 10.3321/j.issn:1000-6869.2007.03.009
    [13] 吴岳刚. C80早龄期型钢混凝土梁受弯性能试验及受弯承载力研究[D]. 北京: 北京交通大学, 2014.

    WU Yue-gang. Experiment and capacity study on bending behavior of C80 steel reinforced concrete beams at early age[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese)
    [14] 王祖华, 陈眼云, 张学文, 等. 劲性钢筋混凝土受弯构件受力性能及计算方法[C]//中国建筑科学研究院. 混凝土结构研究报告选集3. 北京: 中国建筑工业出版社, 1994: 470-478.

    WANG Zu-hua, CHEN Yan-yun. ZHANG Xue-wen, et al. Mechanical performance and calculation method of flexural member of steel reinforced concrete[C]//China Academy of Building Research. Selection of Concrete Structure Research Report 3. Beijing: China Construction Industry Press, 1994: 470-478. (in Chinese)
    [15] 张建文, 司马玉洲, 张仲先. 不同钢骨含钢率的钢骨混凝土梁抗弯性能试验研究[J]. 建筑结构, 2005, 35(8): 79-80, 51. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200508020.htm

    ZHANG Jian-wen, SIMA Yu-zhou. ZHANG Zhong-xian. Test on flexural behavior of steel reinforced concrete beams with different steel ratios[J]. Building Structure, 2005, 35(8): 79-80, 51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200508020.htm
    [16] MORINO S, WADA A, KIMURA M, et al. Strength and deformation capacity of steel reinforced concrete beams and columns using high-strength steel[C]//Japan Society of Civil Engineers. Second Collection of Thematic Speeches on Composite Structures. Tokyo: Japan Society of Civil Engineers, 1989: 261-268.
    [17] 沈银良. 型钢混凝土梁受力性能试验研究[D]. 南京: 南京理工大学, 2005.

    SHEN Yin-liang. Experimental study on mechanical behavior of steel reinforced concrete beams[D]. Nanjing: Nanjing University of Technology, 2005. (in Chinese)
    [18] 袁泉, 杨振坤, 柴洁, 等. 早龄期H型钢混凝土梁受力性能试验研究及有限元分析[J]. 建筑结构学报, 2014, 35(3): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201403025.htm

    YUAN Quan, YANG Zhen-kun, CHAI Jie, et al. Experimental study and FEA on mechanical behavior of H-steel reinforced concrete beams at early-age[J]. Journal of Building Structures, 2014, 35(3): 193-200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201403025.htm
    [19] 叶列平. 钢骨混凝土梁的设计方法[J]. 建筑结构, 1997(10): 33-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG199710010.htm

    YE Lie-ping. Design method of steel reinforced concrete beams[J]. Building Structure, 1997(10): 33-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG199710010.htm
    [20] 于云龙, 贺九洲, 杨勇, 等. 部分预制预应力型钢混凝土梁受力性能试验与设计方法研究[J/OL]. 工程力学. http://kns.cnki.net/kcms/detail/11.2595.O3.20230106.2030.015.html.

    YU Yun-long, HE Jiu-zhou, YANG Yong, et al. Experimental study and design method on mechanical behavior of partially precast prestressed steel reinforced concrete beams[J/OL]. Engineering Mechanics. http://kns.cnki.net/kcms/detail/11.2595.O3.20230106.2030.015.html. (in Chinese)
    [21] 马宁. 预制装配型钢混凝土T型梁抗弯性能研究[D]. 西安: 西安建筑科技大学, 2015.

    MA Ning. Study on flexural behavior of prefabricated and assembly steel reinforced concrete T beam[D]. Xi'an: Xi'an University of Architecture and Technology, 2015. (in Chinese)
    [22] 杨勇, 薛亦聪, 于云龙, 等. 部分预制装配型钢混凝土梁受力性能试验研究[J]. 土木工程学报, 2018, 51(4): 1-9, 19. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201804002.htm

    YANG Yong, XUE Yi-cong, YU Yun-long, et al. Experimental research on mechanical performance of partially precast steel reinforced concrete beams[J]. China Civil Engineering Journal, 2018, 51(4): 1-9, 19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201804002.htm
    [23] 王艺霖, 张忠和, 赵洪凯. 受硫酸盐腐蚀的锈蚀型钢混凝土梁抗弯性能劣化研究[J]. 混凝土, 2021(4): 5-8. doi: 10.3969/j.issn.1002-3550.2021.04.002

    WANG Yi-lin, ZHANG Zhong-he, ZHAO Hong-kai. Study on the bending resistance deterioration of rusty steel reinforced concrete beams corroded by sulfate[J]. Concrete, 2021(4): 5-8. (in Chinese) doi: 10.3969/j.issn.1002-3550.2021.04.002
    [24] LIANG Bin, ZHANG Zhao-liang, LI Rong. Optimal design of SRC transfer beam of high-rise building[J]. Applied Mechanics and Materials, 2013, 438/439: 1884-1887. doi: 10.4028/www.scientific.net/AMM.438-439.1884
    [25] 武永丽, 刘鹏云, 李芳军, 等. 大跨度型钢混凝土梁承载力及影响因素分析[C]//天津钢结构协会. 第二十二届全国现代结构工程学术研讨会论文集. 天津: 天津钢结构协会, 2022: 277-282.

    WU Yong-li, LIU Peng-yun, LI Fang-jun, et al. Analysis of bearing capacity and influencing factors of long-span steel concrete beams[C]//Tianjin Steel Structure Society. 22nd National Symposium on Modern Structural Engineering. Tianjin: Tianjin Steel Structure Society, 2022: 277-282. (in Chinese)
    [26] 宋瑞年, 占玉林, 刘芳, 等. 钢-混凝土组合试件长期推出试验与有限元分析[J]. 交通运输工程学报, 2019, 19(3): 36-45. doi: 10.19818/j.cnki.1671-1637.2019.03.005

    SONG Rui-nian, ZHAN Yu-lin, LIU Fang, et al. Long-term push out test and finite element analysis of steel-concrete composite specimens[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 36-45. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.03.005
    [27] MATSUTA T, KITAJIMA M, MAEGAWA K. Experiments and FEM models on semi-composite behavior of SRC structures[C]//ISEC. 9th International Structural Engineering and Construction Conference: Resilient Structures and Sustainable Construction. Hoboken: ISEC Press/Wiley, 2017: 1-6.
    [28] WANG Xian-lin, LIU Yu-qing, YANG Fei, et al. Effect of concrete cover on the bond-slip behavior between steel section and concrete in SRC structures[J]. Construction and Building Materials, 2019, 229: 116855. doi: 10.1016/j.conbuildmat.2019.116855
    [29] LIU Biao, BAI Guo-liang. Finite element modeling of bond-slip performance of section steel reinforced concrete[J]. Computers and Concrete, 2019, 24(3): 237-247.
    [30] 陈燕, 何夕平, 马乐乐. 各国规程对型钢混凝土梁抗弯承载力计算对比分析[J]. 青岛理工大学学报, 2016, 37(3): 24-29, 42. https://www.cnki.com.cn/Article/CJFDTOTAL-QDJG201603005.htm

    CHEN Yan, HE Xi-ping, MA Le-le. Comparative analysis of beam flexural bearing capacity of solid-wed steel reinforced concrete calculated by codes at home and abroad[J]. Journal of Qingdao University of Technology, 2016, 37(3): 24-29, 42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDJG201603005.htm
    [31] 叶列平. 钢骨混凝土柱的设计方法[J]. 建筑结构, 1997(5): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG199710010.htm

    YE Lie-ping. Design method of steel reinforced concrete column[J]. Building Structure, 1997(5): 8-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG199710010.htm
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  536
  • HTML全文浏览量:  203
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-02
  • 网络出版日期:  2024-03-13
  • 刊出日期:  2024-02-25

目录

    /

    返回文章
    返回