Potential assessment of photovoltaic power in expressway area in China
-
摘要: 为推进高速公路路域内光伏的应用,以Python程序语言中OpenCV库为工具,提取高速路线图中的路线图像并投影至光辐射量分布图,分析在各辐射区域内的高速公路路线长度及其比例;计算了高速公路各类基础设施的占地面积,并采用JNMM60光伏组件参数计算了高速公路路域内的光伏发电潜力;将高速公路运营期及智慧高速路侧设备的电力需求与光伏发电潜力进行对比,并对光伏建设投资成本进行测算。分析结果表明:高速公路路域内的年平均辐射为1 523.865 kW·h·m-2,每平米光伏用地年发电量为63.27 kW·h,全国高速公路总体占地面积在2020年底和2025年底分别可达到约4.9×105、6.4×105 hm2,光伏发电潜力巨大;分别仅需在75%的高速服务管理区域及10%的路侧区域内安装光伏设备即可满足高速公路运营期内及智慧高速路侧设备的全部电力需求,且仅需4~6年即可回收建设成本;在高速公路路域内大规模铺设光伏设备仍面临初始建设投资成本巨大、光伏产能技术不足、配套设施需求巨大、光伏设施与道路交通环境相互影响不明、供需空间匹配性较差及大规模光伏规划设计管理系统方法欠缺等困难。Abstract: In order to promote the application of photovoltaic (PV) in the expressway area, the OpenCV library in the Python programming language was used as a tool, and the route images in the expressway route map were extracted and projected to the light radiation distribution map. The length of the expressway in each radiation area and its proportion were analyzed. The land areas of various types of expressway infrastructures were calculated. The JNMM60 PV module parameters were adopted to calculate the PV power potential in the expressway area. The power demands of expressway operation period and intelligent expressway roadside equipments were compared with the PV power potential, and the PV construction and investment costs were calculated. Analysis results show that the annual average radiation in the expressway area is 1 523.865 kW·h·m-2, and the annual power generation per square meter of PV land is 63.27 kW·h. The land area of the nationwide expressway can reach about 4.9×105 hm2 by the end of 2020 and 6.4×105 hm2 by the end of 2025, indicating great PV power potential. Only 75% of the expressway service management area and 10% of the roadside area require the installation of PV equipment to meet all the power demands during the expressway operation period and those of intelligent expressway roadside equipments, and it only takes 4-6 years to recover the construction cost. The large-scale installation of PV equipment in the expressway area still faces difficulties, such as huge initial construction and investment costs, insufficient of PV production capacity and technology, large demand for supporting facilities, unknown interaction between PV infrastructure and road traffic environment, poor space matching between supply and demand, and lack of large-scale PV planning and design management system methods. 14 tabs, 4 figs, 42 refs.
-
Key words:
- road engineering /
- expressway /
- power demand /
- photovoltaic power /
- Python /
- image analysis
-
表 1 辐照能量密度分布
Table 1. Distributions of energy densities of irradiation
辐照能量密度/ (kW·h·m-2) 色域像素点数 比例/ % 占地面积/ (104 km2) 辐照能量密度加权均值/(kW·h·m-2) [901, 1 000) 20 534 1.95 18.69 18.5 [1 000, 1 200) 83 111 7.88 75.63 86.7 [1 200, 1 400) 139 455 13.22 126.91 171.9 [1 400, 1 600) 92 266 8.75 83.97 131.2 [1 600, 1 800) 140 429 13.31 127.80 226.4 [1 800, 2 000) 271 456 25.73 247.04 489.1 [2 000, 2 200) 200 072 18.96 182.08 398.4 [2 200, 2 400) 100 946 9.57 91.87 220.1 [2 400, 2 472) 6 604 0.63 6.01 15.3 表 2 各辐照区域路线里程分布
Table 2. Distributions of route mileage in each irradiated area
辐照能量密度/ (kW·h·m-2) [901, 1 000) [1 000, 1 200) [1 200, 1 400) [1 400, 1 600) [1 600, 1 800) [1 800, 2 000) [2 000, 2 200) [2 200, 2 400) [2 400, 2 472) 路线里程/ km 放射线 0 1 476 3 165 3 078 3 326 1 245 2 503 1 848 0 横线 2 013 5 662 9 568 5 876 4 669 1 923 338 43 3 纵线 1 293 5 888 10 396 5 593 4 292 3 406 1 519 131 0 联络线 2 769 9 370 19 702 11 846 13 254 11 966 3 892 2 041 118 展望线 0 0 0 0 1 044 4 311 724 1 194 515 路线里程合计/km 6 075 22 396 42 831 26 393 26 585 22 851 8 976 5 257 636 里程占比/% 3.75 13.82 26.44 16.29 16.41 14.11 5.54 3.25 0.39 表 3 高速公路运营设施各类能源消耗比例
Table 3. Proportions of various types of energy consumption of expressway operation facilities
% 能源类型 电能 燃油 液化气 水 能耗比例 85.39 12.15 1.44 1.02 表 4 高速公路服务设施用地情况
Table 4. Land situation of expressway service facilities
年份 设施类型 数量/处 单处用地面积/hm2 总用地面积/hm2 2020年底 停车区 10 733 1 10 733 服务区 3 220 4 12 880 2025年底 停车区 14 000 1 14 000 服务区 4 200 4 16 800 2035年底 停车区 10 800 1 10 800 服务区 3 240 4 12 960 表 5 高速公路车道数分布
Table 5. Distribution of expressway lane number
车道数 2020年底 2025年底 2035年底 4车道 比例/% 79.50 74.50 64.50 里程/104 km 12.80 15.64 10.45 6车道 比例/% 16.50 21.50 31.50 里程/104 km 5.10 2.66 4.51 8车道 比例/% 4.00 4.00 4.00 里程/104 km 0.64 0.84 0.65 平均车道数/个 4.49 4.59 4.79 总里程/104 km 16.10 20.99 16.20 表 6 各类地形坡度占比
Table 6. Sloping percentages of each type of terrain
地形坡度类型 分类标准 面积占比/% Ⅰ类 坡度不超过3° 32.530 Ⅱ类 坡度为3°~20°, 相对高差不超过200 m 40.065 Ⅲ类 坡度不低于20°,相对高差超过200 m 27.405 表 7 高速公路管理设施用地情况
Table 7. Land situation of expressway management facilities hm2
用地指标 2020年底 2025年底 2035年底 路基 444 294.8 586 822.0 464 747.1 监控分中心 2 822.5 3 688.9 2 862.1 监控站 1 411.3 1 844.6 1 431.1 养护工区 8 250.5 10 783.1 8 366.2 匝道收费站 5 909.0 7 818.4 6 010.6 主线收费站 742.1 表 8 收费站及收费车道数
Table 8. Numbers of toll stations and toll lanes
收费站类型 主线收费站 匝道收费站 8车道 6车道 4车道 单一收费站 入口收费车道数/个 11 8 8 3 出口收费车道数/个 17 13 10 3 2020年底 收费站数/座 19 80 385 9 848 收费车道数/个 532 1 680 6 930 59 088 2025年底 收费站数/座 19 104 361 13 031 收费车道数/个 532 2 184 6 498 78 186 2035年底 收费站数/座 19 152 312 10 018 收费车道数/个 532 3 192 5 616 60 106 表 9 高速公路运营期年能耗
Table 9. Annual energy consumptions during expressway operation period
类别 2020年底全国高速公路 2025年底全国高速公路 2035年国家高速公路 车道数/个 4 6 8 4 6 8 4 6 8 总里程/km 127 995 26 565 6 440 156 376 45 129 8 396 104 490 51 030 6 480 车道里程占比/% 79.5 16.5 4.0 74.5 21.5 4.0 64.5 31.5 4.0 隧道里程千分比/‰ 4.45 5.67 8.39 收费车道数/个 54 243 11 258 2 729 65 113 18 791 3 496 44 793 21 875 2 778 服务区与停车区数量 11 093 2 302 558 13 559 3 913 728 9 056 4 423 562 能耗/(GW·h) 18 171.34 3 772.70 916.64 22 149.31 6 393.36 1 191.61 14 861.38 7 259.13 924.10 总能耗/(GW·h) 22 860.68 29 734.30 23 044.62 电能占比/% 85.39 85.39 85.39 总耗电量/(GW·h) 19 520.01 25 389.17 19 677.06 表 10 路侧典型智能设备及其年能耗
Table 10. Typical roadside intelligent devices and its annual power consumptions
设备 功率/W 间距/km 总能耗/(kW·h·m-1) 数据来源 PD-132A型智能车辆检测器 4.5 0.50 33.89 文献[26] 紧急电话 1.0 0.50 FT-GLQX高速公路气象监测站 10.0 20.00 《关于印发全国高速公路交通气象观测站网布局方案(2012—2014年)的通知》 DNQ1-V35能见度传感器 3.0 20.00 DS-2CD4A26FWD-LZS/P型智能摄像机 24.0 0.80 《智慧高速公路第1部分:总体技术要求》 (DB50/T 10001.1—2021) Melon MOX-BOX1型边缘计算设备 36.0 0.80 EPISTAR诱导灯 144.0 0.04 VTD型视频交通事件检测器 100.0 1.50 《智慧高速公路建设指南》(暂行) HIK-R1-JXO11L/D(DT)型RSU 12.0 0.80 文献[27] 门架式公路LED可变信息标志 2 500.0 25.00 《公路LED可变信息标志能效限定值及能效等级》(征求意见稿编制说明) 表 11 JNMM60型光伏电池组件参数
Table 11. Parameters of JNMM60 PV module
组件大小/ m2 组件尺寸(长×宽×高)/mm 单位组件用地面积/m2 光电转换效率/% 1.66 1 665×996×35 5 19.3 表 12 高速公路路域内光伏发电潜力
Table 12. PV power potentials in expressway road area
测算方式 发电量/(GW·h) 2020年底 2025年底 2035年底 方式1 101 863.39 132 802.02 102 496.08 方式2 20 284.96 26 446.04 20 486.03 方式3 120 796.02 157 484.99 121 616.38 方式4 308 148.31 406 538.88 321 356.40 传统电力需求 19 520.01 25 389.17 19 677.06 智慧高速能耗 5 455.72 7 112.77 5 489.61 表 13 高速公路各类运营设施年耗电
Table 13. Annual power consumptions of various types of expressway operation facilities
基础设施 电能消耗量/(kW·h) 隧道 每米为1 182.59 收费站 每车道为19 425.22 服务区 每平米为118.19 停车区 每平米为79.83 养护区 每平米为38.98 沿线照明 每平米为6.09 监控管理中心 每平米为168.62 路侧智能设施 每米为33.89 表 14 光伏成本分析结果
Table 14. Analysis result of PV cost
成本指标 2025年 2030年 LCOE/[元·(kW·h)-1] 0.20 0.18 抵购电电价/[元·(kW·h)-1] 0.64 上网余电电价/[元·(kW·h)-1] 0.37 碳排放因子/[kg·(kW·h)-1] 0.53 0.43 每吨碳价/元 87 139 年运维费用/(元·W-1) 0.045 0.044 初始全投资/(元·kW-1) 3 686 3 433 抵购电平均收益/[元·(kW·h)-1] 0.49 0.52 上网余电平均收益/[元·(kW·h)-1] 0.22 0.25 抵购电年收益/元 915.36 934.92 上网余电年收益/元 541.28 560.84 抵购电投资回收期/年 4.03 3.67 上网余电投资回收期/年 6.81 6.12 -
[1] 姚玉璧, 郑绍忠, 杨扬, 等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报, 2022, 43(10): 524-535.YAO Yu-bi, ZHENG Shao-zhong, YANG Yang, et al. Progress and prospects on solar energy resource evaluation and utilization efficiency in China[J]. Acta Energiae Solaris Sinica, 2022, 43(10): 524-535. (in Chinese) [2] REDISKE G, SILUK J C M, GASTALDO N G, et al. Determinant factors in site selection for photovoltaic projects: a systematic review[J]. International Journal of Energy Research, 2019, 43(5): 1689-1701. doi: 10.1002/er.4321 [3] KIM B, HAN S, HEEO J, et al. Proof-of-concept of a two-stage approach for selecting suitable slopes on a highway network for solar photovoltaic systems: a case study in South Korea[J]. Renewable Energy, 2020, 151: 366-377. doi: 10.1016/j.renene.2019.11.021 [4] KIM S, LEE Y, MOON H R. Siting criteria and feasibility analysis for PV power generation projects using road facilities[J]. Renewable and Sustainable Energy Reviews, 2017, 81: 3061-3069. [5] CHEN Jie, YU Zhong-hui, CHEN Guo-yan, et al. Calculation of carbon emission during expressway operation period based on energy consumption analysis[J]. IOP Conference Series: Earth and Environmental Science, 2021, DOI: 10.1088/1755-1315/647/1/012190. [6] 尚春静, 张智慧, 李小冬. 高速公路生命周期能耗和大气排放研究[J]. 公路交通科技, 2010, 27(8): 149-154.SHANG Chun-jing, ZHANG Zhi-hui, LI Xiao-dong. Research on energy consumption and emission of life cycle of expressway[J]. Journal of Highway and Transportation Research, 2010, 27(8): 149-154. (in Chinese) [7] 朱晓艳, 叶瑞云. 高速公路建设项目节能评价探讨[J]. 公路, 2014, 59(8): 6-10.ZHU Xiao-yan, YE Rui-yun. Discussion on the energy-saving evaluation of expressway construction projects[J]. Highway, 2014, 59(8): 6-10. (in Chinese) [8] ZHANG Zi-qi, CHEN Zhong, XING Qiang, et al. Evaluation of the multi-dimensional growth potential of China's public charging facilities for electric vehicles through 2030[J]. Utilities Policy, 2022, 75(4): 1-12. [9] 杜豫川, 刘成龙, 吴荻非, 等. 新一代智慧高速公路系统架构设计[J]. 中国公路学报, 2022, 35(4): 203-214.DU Yu-chuan, LIU Cheng-long, WU Di-fei, et al. Framework of the new generation of smart highway[J]. China Journal of Highway and Transport, 2022, 35(4): 203-214. (in Chinese) [10] 杨敏, 王立超, 张健, 等. 面向智慧高速的合流区协作车辆冲突解脱协调方法[J]. 交通运输工程学报, 2020, 20(3): 217-224. doi: 10.19818/j.cnki.1671-1637.2020.03.020YANG Min, WANG Li-chao, ZHANG Jian, et al. Collaborative method of vehicle conflict resolution in merging area for intelligent expressway[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 217-224. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.03.020 [11] 吴建清, 宋修广. 智慧公路关键技术发展综述[J]. 山东大学学报(工学版), 2020, 50(4): 52-69.WU Jian-qing, SONG Xiu-guang. Review on smart highways critical technology[J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 52-69. (in Chinese) [12] 张昕冉, 孙洪运, 张立涛. 多场景智慧高速公路的交通气象观测站点布设[J]. 铁道科学与工程学报, 2022, 19(11): 3447-3456.ZHANG Xin-ran, SUN Hong-yun, ZHANG Li-tao. Locating road weather information system stations on multi-scenario smart expressway[J]. Journal of Railway Science and Engineering, 2022, 19(11): 3447-3456. (in Chinese) [13] SINGH R, SHARMA R, AKRAM S V, et al. Highway 4.0: digitalization of highways for vulnerable road safety development with intelligent IoT sensors and machine learning[J]. Safety Science, 2021, 143: 105407. doi: 10.1016/j.ssci.2021.105407 [14] RAHMAN M W, MAHMUD M S, AHMED R, et al. Solar lanes and floating solar PV: new possibilities for source of energy generation in Bangladesh[C]//IEEE. 2017 Innovations in Power and Advanced Computing Technologies (I-PACT). New York: IEEE, 2017: 1-6. [15] 蒋海峰, 黄森炎, 刘志强, 等. 公路交通设施与清洁能源融合创新技术与发展[J]. 公路交通科技, 2020, 37(增2): 1-5.JIANG Hai-feng, HUANG Sen-yan, LIU Zhi-qiang, et al. Innovative technology and development of integration of highway traffic facilities and clean energy[J]. Journal of Highway and Transportation Research and Development, 2020, 37(S2): 1-5. (in Chinese) [16] 胡恒武, 查旭东, 吕瑞东, 等. 基于光伏发电的道路能量收集技术研究进展[J]. 材料导报, 2022, 36(20): 129-140.HU Heng-wu, ZHA Xu-dong, LYU Rui-dong, et al. Recent advances of energy harvesting technologies in road based on photovoltaic power generation[J]. Materials Reports, 2022, 36(20): 129-140. (in Chinese) [17] WADHAWAN S R, PEARCE J M. Power and energy potential of mass-scale photovoltaic noise barrier deployment: a case study for the U.S. [J]. Renewable and Sustainable Energy Reviews, 2017, 80: 125-132. doi: 10.1016/j.rser.2017.05.223 [18] JUNG J, HAN S U, KIM B. Digital numerical map-oriented estimation of solar energy potential for site selection of photovoltaic solar panels on national highway slopes[J]. Applied Energy, 2019, DOI: 10.1016/j.apenergy.2019.03.101. [19] NEUMANN H M, SCHAER D, BAUMGARTNER F. The potential of photovoltaic carports to cover the energy demand of road passenger transport[J]. Progress in Photovoltaics, 2012, 20(6): 639-649. doi: 10.1002/pip.1199 [20] 李明霞. 太阳能光伏发电系统在高速公路领域的应用探讨[J]. 科技创新与应用, 2020(31): 177-178, 181.LI Ming-xia. Discussion on the application of solar photovoltaic power generation system in the field of highway[J]. Technology Innovation and Application, 2020(31): 177-178, 181. (in Chinese) [21] KUMAR D. Mapping solar energy potential of Southern India through geospatial technology[J]. Geocarto International, 2018, DOI: 10.1080/10106049.2018.1494759. [22] VAN DEN DOBBELSTEEN A, BROERSMA S, STREMKE S. Energy potential mapping for energy-producing neighborhoods[J]. International Journal of Sustainable Building Technology and Urban Development, 2011, 2(2): 170-176. doi: 10.5390/SUSB.2011.2.2.170 [23] 韩丹. 交通空间可再生能源规划策略研究[D]. 天津: 天津大学, 2018.HAN Dan. Research on planning strategy of renewable energy in transportation space[D]. Tianjin: Tianjin University, 2018. (in Chinese) [24] 唐珂. 高速公路营运期能耗水平分析与测算方法研究[D]. 西安: 长安大学, 2013.TANG Ke. Energy consumption analysis and calculation method study of expressway operation period[D]. Xi'an: Chang'an University, 2013. (in Chinese) [25] 马书红, 牛方方, 向前忠, 等. 高速公路营运期节能措施及其效果评价研究[J]. 公路, 2014, 59(10): 177-182.MA Shu-hong, NIU Fang-fang, XIANG Qian-zhong, et al. Research on energy-saving method and effect evaluation of expressway in service period[J]. Highway, 2014, 59(10): 177-182. (in Chinese) [26] 朱泰英. 高速公路交通管理系统社会经济影响评价研究[D]. 长春: 吉林大学, 2004.ZHU Tai-ying. Study on assessing the socio-economic impact for freeway traffic management system[D]. Changchun: Jilin University, 2004. (in Chinese) [27] ZHANG Ling-yu, WANG Li, ZHANG Li-li, et al. An RSU deployment scheme for vehicle-infrastructure cooperated autonomous driving[J]. Sustainability, 2023, 15(4): 3847. doi: 10.3390/su15043847 [28] 苏勇勇. 山西省太阳能资源评估及规划管理研究[D]. 太原: 山西财经大学, 2022.SU Yong-yong. Study on evaluation and planning management of solar energy resources in Shanxi Province[D]. Taiyuan: Shanxi University of Finance and Economics, 2022. (in Chinese) [29] DESIDERI U, ZEPPARELLI F, MORETTINI V, et al. Comparative analysis of concentrating solar power and photovoltaic technologies: technical and environmental evaluations[J]. Applied Energy, 2013, 102: 765-784. doi: 10.1016/j.apenergy.2012.08.033 [30] DAI Yi-qing, YIN Yan, LU Yun-di. Strategies to facilitate photovoltaic applications in road structures for energy harvesting[J]. Energies, 2021, 14(21): 1-14. [31] 马书红, 向前忠, 唐珂, 等. 高速公路营运期能耗体系与统计指标研究[J]. 公路, 2013, 58(10): 146-150.MA Shu-hong, XIANG Qian-zhong, TANG Ke, et al. Research on energy consumption system and statistical indicators of expressway in operation period[J]. Highway, 2013, 58(10): 146-150. (in Chinese) [32] 徐婷, 肖为. 高速公路项目能耗评估研究[J]. 科技创新与应用, 2014(12): 178.XU Ting, XIAO Wei. Assessment study on energy consumption of expressway projects[J]. Technology Innovation and Application, 2014(12): 178. (in Chinese) [33] 吕嘉旭. 严寒地区高速公路项目能源消耗计算与评价——以集安至通化高速公路为例[D]. 长春: 吉林大学, 2017.LYU Jia-xu. Calculation and evaluation of energy consumption of expressway in severe cold area—an example of Ji'an to Tonghua Expressway[D]. Changchun: Jilin University, 2017. (in Chinese) [34] 李志锋, 王小军. 高速公路运营期节能减排评估标准体系构建[J]. 公路交通技术, 2020, 36(3): 132-139.LI Zhi-feng, WANG Xiao-jun. Establishment of energy- saving and emission-reduction evaluation standard system in the operation stage of expressway[J]. Technology of Highway and Transport, 2020, 36(3): 132-139. (in Chinese) [35] 甄梁. 高速公路节能评估理论与方法[D]. 西安: 长安大学, 2012.ZHEN Liang. Energy-saving evaluation theory and methods for expressway[D]. Xi'an: Chang'an University, 2012. (in Chinese) [36] LI Dong-qi, WANG Duan-yi. Decomposition analysis of energy consumption for an freeway during its operation period: a case study for Guangdong, China[J]. Energy, 2016, 97: 296-305. [37] ROBINSON J, BRASE G, GRISWOLD W, et al. Business models for solar powered charging stations to develop infrastructure for electric vehicles[J]. Sustainability, 2014, 6(10): 7358-7387. [38] POE C, FILOSA G. Alternative uses of highway rights-of-way accommodating renewable energy technologies[J]. Transportation Research Record, 2012(2270): 23-30. [39] VERONESE E, MANZOLINI G, MOSER D. Improving the traditional levelized cost of electricity approach by including the integration costs in the techno-economic evaluation of future photovoltaic plants[J]. International Journal of Energy Research, 2021, 45(6): 9252-9269. [40] VARTIAINEN E, MASSON G, BREYER C. PV LCOE in Europe 2015-2050[C]//WIP-Renewable Energies. 31st European Photovoltaic Solar Energy Conference. Munich: WIP-Renewable Energies, 2015: 3024 -3033. [41] DURRANI S P, BALLUFF S, WURZER L, et al. Photovoltaic yield prediction using an irradiance forecast model based on multiple neural networks[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(2): 255-267. [42] GUO Qiao-ming, LIANG Hua, LIAO Huan-wang, et al. Statistical analysis and research on energy consumption in highway service area[C] //IEEE. 2022 7th International Conference on Intelligent Computing and Signal Processing. New York: IEEE, 2022: 210-214. -