-
摘要: 现代化的综合交通体系和智能交通系统要求必须首先解决运输需求分析和运输网络分析的技术问题。Petri网理论可以被引进到运输网络理论中, 用来解决最基本也是应用最广泛的最大流问题。首先介绍了Petri网与有向网络的Petri网模型; 然后, 给出有向网络最大流的求最短路法; 在此基础上, 采用Petri网论法和计算机图形仿真法相结合的方法, 求解运输网络最大流。即用Petri网图仿真器把无向运输网络转化为有向运输网络, 然后求有向运输网络G的对偶网络DG, 再用Petri网图仿真器将对偶网络DG转换成Petri图模型, 并自动求得DG最短路(原网络G的最小割容量), 即运输网络最大流。该方法比现有方法更方便, 速度更快, 而且形象、直观, 是更实用的方法和手段。Abstract: With the development of the research about comprehensive traffic system and intelligent traffic system, the technical problem of transportation requirement analysis and network analysis is supposed to be resolved firstly. Petri net theory can be used to solve the maximum flow problem in the ransportation network.Petri net and Petri net model of directional network are first introduced, then, a more applied method of seeking the maximum flow is given out.With the use of Petri net simulator, nondirectional transportation network is converted into a directional network, and its dual graph, denoted by DG, is converted into its Petri net model, then automatically get the maximum flow of the transportation network by seeking the DG's shortest path, i.e. the G's minimum cut capacity. This visual and intuitionistic method is more convenient and faster than the existing methods.
-
Key words:
- transportation network /
- maximum flow /
- Petri net /
- simulating
-
[1] Lu Huapu, Shi Qixin. Progress in the research of intelligent transportation system and their prospects[J]. Science and Technology Review, 1996, 17(10): 54-57. [2] 袁崇义.Petri网原理[M]. 北京: 电子工业出版社, 1998. [3] Huang Shengguo. Petri net simulation of discrete event system[J]. Acta Aeronautica et Astronautica Sinica, 1991, 12(9): 548-551. http://en.cnki.com.cn/Article_en/CJFDTotal-HKXB199109018.htm [4] 胡运权. 运筹学教程[M]. 北京: 清华大学出版社, 1998. [5] 郭辉煌. 运筹学与工程系统分析[M]. 北京: 建筑工业出版社, 1986.