-
摘要: 为比较基层裂缝形态不同时, 湿度和温度变化所引起的面层及基层内应力的变化情况, 采用三维有限元方法建立了含不同深度、宽度与间距基层裂缝的路面模型, 采用实测的基层有限元参数, 分析处于不同开裂状态的水泥稳定碎石基层沥青路面在失水和降温时, 基层内的最大应力与应力分布情况, 以及对沥青面层的影响。分析结果表明: 对于新铺筑的基层, 因失水引起的收缩应力较温差的影响更为显著; 其他条件一致时, 基层模量为4000MPa左右时, 对于减少基层开裂最有利; 无论对于失水还是降温条件, 各结构层自身的模量是影响其应力的最显著因素; 基层与底基层间粘结不好时, 面层底部的拉应力比层间完全连续时更大, 基层裂缝更易反射至面层。Abstract: In order to compare the stress varieties in surface and base caused by different humidities, temperatures and base crack states, pavement models with different crack depthes, widthes and spaces were established by 3D finite element method. Using the test parameters of base, the maximum stress, stress distribution and the influence on asphalt pavement were analyzed under water losing condition and temperature decreasing condition for cement stabilized macadam base asphalt pavements with different base crack states. Analysis result indicates that, for new base, the influence of water losing on shrinkage stress is more remarkable than that of temperature dropping; it is the most favorable condition for reducing base crack when base modulus is about 4 000 MPa; whether water losing or temperature decreasing, the most marked factor of influencing structural stress is each layer-self modulus; when joint state between base and sub-base is bad, the tensile stress in surface bottom is larger than that in continuum state, and base crack easily reflects to pavement surface.
-
Key words:
- pavement engineering /
- base crack /
- stress comparison /
- finite element method
-
表 1 温度应力计算结果
Table 1. Calculated result of temperature stress
结构深度/m 解析解 单元类型 C3D20 C3D20R C3D8 C3D8R C3D8I 0.000 2.052 2.142 2.141 2.006 2.000 0 2.148 0.145 0.866 0.887 0.887 0.854 0.920 0 0.887 0.155 -0.037 -0.048 -0.044 -0.031 -0.004 9 -0.039 注: 表中计算结果采用文献[10]中的结构参数。 表 2 路面结构参数
Table 2. Parameters of pavement structure
结构层 厚度/cm 模量/MPa 温缩系数/(με·℃-1) 泊松比 面层 18 1 800 20 0.35 基层(水稳碎石) 30 依材料不同而变化 依材料不同而变化 0.15 底基层(级配碎石) 30 1 000 10 0.25 土基 800 60 20 0.35 表 3 基层材料参数
Table 3. Parameters of base materials
基层材料 弹性模量/MPa 劈裂强度/MPa 干缩系数/(με·%-1) 温缩系数/(με·℃-1) 1 2 000 0.27 70.4 6.7 2 4 000 0.45 51.2 7.0 3 6 000 0.60 50.4 7.3 4 8 000 0.72 60.8 7.6 5 12 000 0.93 115.9 8.2 表 4 最大主应力计算结果
Table 4. Calculated result of max principal stress
MPa 表 5 不同结构的因素水平
Table 5. Factor levels of different structures
表 6 不同开裂间距的结构应力
Table 6. Structural stresses for different crack spaces
-
[1] 王金昌, 朱向荣. 软土地基上含反射裂缝沥青道路的动力响应分析[J]. 中国公路学报, 2004, 17(1): 1-6. doi: 10.3321/j.issn:1001-7372.2004.01.001WANG Jin-chang, ZHU Xiang-rong. Dynamic analysis of asphalt pavement with reflective cracking on the soft clay ground[J]. China Journal of Highway and Transport, 2004, 17(1): 1-6. (in Chinese) doi: 10.3321/j.issn:1001-7372.2004.01.001 [2] 王宏畅, 黄晓明, 傅智. 半刚性基层表面裂缝影响因素[J]. 交通运输工程学报, 2005, 5(2): 38-41. doi: 10.3321/j.issn:1671-1637.2005.02.010WANG Hong-chang, HUANG Xiao-ming, FU Zhi. Influence factors on surface crack of semi-rigid base course[J]. Journal of Traffic and Transportation Engineering, 2005, 5(2): 38-41. (in Chinese) doi: 10.3321/j.issn:1671-1637.2005.02.010 [3] BOZKURT D. Three di mensional finite element analysis to evaluate reflective cracking potential in asphalt concrete over-lays[D]. Urbana-Champaign: University of Illinois, 2002. [4] SCHOSCH M R. Determining the causes of top-down cracks in bituminous pavements[D]. Flint: Michigan State Univer-sity, 2003. [5] TI MM D H. A phenomenological model to predict thermalcrack spacing of asphalt pavement[D]. Duluth: University of Minnesota, 2001. [6] 陈超纲, 程跃辉, 孙东根, 等. 低剂量水稳基层防治薄面层沥青路面反射裂缝研究[J]. 公路交通科技, 2005, 22(9): 48-51. doi: 10.3969/j.issn.1002-0268.2005.09.012CHEN Chao-gang, CHENG Yue-hui, SUN Dong-gen, et al. Research on use of lowcement content stabilized material base to prevent reflection crackingin thin asphalt pavement[J]. Journal of Highway and Transportation Research and Development, 2005, 22(9): 48-51. (in Chinese) doi: 10.3969/j.issn.1002-0268.2005.09.012 [7] 倪富健, 尹应梅, 高明生. 聚酯玻纤布防荷载型反射裂缝室内模拟试验[J]. 东南大学学报: 自然科学版, 2007, 37(1): 128-131. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX200701026.htmNI Fu-jian, YI N Ying-mei, GAO Ming-sheng. Lab si mula-tion study on reflective cracking resistance of treat ment with fiberglass-polyester paving mat[J]. Journal of Southeast Uni-versity: Natural Science Edition, 2007, 37(1): 128-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX200701026.htm [8] 蒋应军, 戴经梁. 土工织物在道路工程防裂中的应用[J]. 长安大学学报: 自然科学版, 2007, 27(4): 18-22. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200704004.htmJI ANG Ying-jun, DAI Jing-liang. Application of geotextilein preventing reflection cracks in asphalt pavement[J]. Journal of Chang an University: Natural Science Edition, 2007, 27(4): 18-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200704004.htm [9] 吴赣昌. 层状路面结构温度应力分析[J]. 中国公路学报, 1993, 6(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL199304000.htmWU Gan-chang. Thermal stress analysis of layered structure pavement[J]. China Journal of Highway and Transport, 1993, 6(4): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL199304000.htm [10] 孙立军. 沥青路面结构行为理论[M]. 北京: 人民交通出版社, 2005. [11] 李再新. 水泥稳定碎石混合料路用性能及指标相关性研究[D]. 南京: 东南大学, 2006. [12] 吴赣昌. 层状路面体系温度场分析[J]. 中国公路学报, 1992, 5(4): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL199204002.htmWU Gan-chang. Analysis of temperature field in pavement layers[J]. China Journal of Highway and Transport, 1992, 5(4): 17-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL199204002.htm [13] 李强. 半刚性基层沥青路面反射裂缝控制指标研究[D]. 南京: 东南大学, 2006. [14] 张嘎吱. 考虑抗裂性的水泥稳定类材料配合比设计方法研究[D]. 西安: 长安大学, 2001. [15] 沙庆林. 高等级公路半刚性基层沥青路面[M]. 北京: 人民交通出版社, 1999.