-
摘要: 为减轻重载轨道车辆质量, 提高车辆的承载能力, 对于采用具有强化效应高强度低合金钢的车辆结构, 按材料非线性理论, 允许结构局部塑性变形, 进行结构轻量化设计, 采取弱化端墙、强化底架的结构优化措施, 并采用几何非线性理论对其进行非线性稳定性分析。按此非线性分析方法, 对新研发的轴载40 t、总载160 t的重载敞车进行了车体结构优化设计。在纵向压缩工况下, 优化后车体结构最大应力为336 MPa, 小于材料Q450NQR1屈服强度450 MPa, 发生局部屈曲的最小临界载荷Fcr为6 252 kN。在纵向冲击工况下, 车体的大应力点分布在上侧梁和上端梁区域, 应力值达到530 MPa左右, 仍低于材料的极限强度550 MPa, 且底架上的应力分布较优化前更均匀。车体结构的强度、刚度及稳定性符合AAR标准规范要求, 车辆自重系数仅为0.16。分析结果表明非线性分析方法是重载车辆结构轻量化设计的有效手段。Abstract: Based on material nonlinear theory and local plastic deformation being allowed, structure lightweight design were carried out in order to relieve the mass and increase the load-carrying capacity for heavy haul railway vehicle, which was made of high strength low-alloy steel with strengthening characteristic.The optimization measures to weaken the end-wall and strengthen under-frame structure were taken.Furthermore, the nonlinear stability analysis of the lightening structure was put up using geometric nonlinear theory, and was used to develope an optimization new-type 40 t-axle-load heavy haul gondola car whose total mass is 160 t.Under longitudinal compress load case, the maximum stress is 336 MPa, which is less than the yield stress 450 MPa of Q450NQR1 material, and the critical load of local buckling occurrence is 6 252 kN.Under longitudinal impact load case, some stresses are about 530 MPa located on top side cant and end cant, which are below the limited stress 550 MPa, and the stresses on under-frame are more uniformity than that before the optimization.The strength, stiffness and stability of the car meet the demand of AAR criterion, and the deadweight coefficient is only 0.16.The result shows that nonlinear analysis method is a valid instrument of lightweight design of heavy haul vehicle.
-
表 1 底架结构参数
Table 1. Structural parameters of underframe
-
[1] 钱立新. 国际重载机车车辆的最新进展[J]. 机车电传动, 2002 (1): 1-4, 17. doi: 10.3969/j.issn.1000-128X.2002.01.001QI AN Li-xin. Latest development of international heavyfreight rolling stocks[J]. Electric Drive for Locomotives, 2002 (1): 1-4, 17. (in Chinese) doi: 10.3969/j.issn.1000-128X.2002.01.001 [2] YAO Shu-guang, TI AN Hong-qi, HUANG Ming-gao. Thefinite element analysis report of FMG 40t-axle-load heavyhaul freight ore gondola[R]. Changsha: Central SouthUniversity, 2007. [3] 周张义, 李芾, 傅茂海. 材料参数对机车车辆结构有限元分析的影响研究[J]. 中国铁道科学, 2008, 29 (2): 99-103. doi: 10.3321/j.issn:1001-4632.2008.02.019ZHOUZhang-yi, LI Fu, FU Mao-hai. Research onthe effectof material parameters on the finite element analysis oflocomotive and vehicle structure[J]. China Rail way Science, 2008, 29 (2): 99-103. (in Chinese) doi: 10.3321/j.issn:1001-4632.2008.02.019 [4] 丁彦闯, 兆文忠, 马思群, 等. 屈曲分析在车辆应用中的关键技术[J]. 大连铁道学院学报, 2003, 24 (2): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD200302011.htmDI NG Yan-chuang, ZHAO Wen-zhong, MA Si-qun, et al. The key technology of buckling analysis in rail way car[J]. Journal of Dalian Rail way Institute, 2003, 24 (2): 44-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD200302011.htm [5] 刘涛, 沈丰, 陈顺安, 等. 移动式救生钟耐压壳强度与稳定性计算分析[J]. 中国造船, 1996 (2): 71-78. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC199602008.htmLI U Tao, SHEN Feng, CHENShun-an, et al. Strength andbuckling analysis of pressure hull of removable rescue clock[J]. Ship Building of China, 1996 (2): 71-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC199602008.htm [6] 刘华. 轻量化通用敞车设计[J]. 铁道车辆, 2004, 42 (3): 21-24. doi: 10.3969/j.issn.1002-7602.2004.03.006LIU Hua. Design of lightening gondola cars of general purpose[J]. Rolling Stock, 2004, 42 (3): 21-24. (in Chinese) doi: 10.3969/j.issn.1002-7602.2004.03.006 [7] M-1001, design, fabrication and construction of freight cars[S]. [8] SRI NI VASAN R S, RAMACHANDRAN S V. Linear andnonlinear analysis of stiffened plates[J]. InternationalJournal of Solids and Structures, 1977, 13 (10): 897-912. doi: 10.1016/0020-7683(77)90003-8 [9] BYKLUM E, AMDAHL J. A si mplified method for elasticlarge deflection analysis of plates and stiffened panels due tolocal buckling[J]. Thin-Walled Structures, 2002, 40 (11): 925-953. doi: 10.1016/S0263-8231(02)00042-3 [10] 丁美. 结构稳定性分析中ANSYS的应用[J]. 低温建筑技术, 2003 (6): 42-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW200306020.htmDI NG Mei. Applications of ANSYSin the structural stabilityanalysis[J]. Low Temperature Architecture Technology, 2003 (6): 42-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW200306020.htm [11] 徐文平, 裴铭海, 戴捷, 等. 大跨简支系杆拱桥非线性稳定性[J]. 交通运输工程学报, 2005, 5 (4): 53-57. http://transport.chd.edu.cn/article/id/200504011XU Wen-ping, PEI Ming-hai, DAI Jie, et al. Nonlinearstability of si mplysupportedtied-arch bridge withlong span[J]. Journal of Traffic and Transportation Engineering, 2005, 5 (4): 53-57. (in Chinese) http://transport.chd.edu.cn/article/id/200504011 [12] 张峰, 叶见曙, 徐向锋. 预应力混凝土梁非线性分析单元模型[J]. 交通运输工程学报, 2007, 7 (5): 68-72. http://transport.chd.edu.cn/article/id/200705015ZHANG Feng, YE Jian-shu, XU Xiang-feng. Nonlinearanalysis element model of prestressed concrete beam[J]. Journal of Traffic and Transportation Engineering, 2007, 7 (5): 68-72. (in Chinese) http://transport.chd.edu.cn/article/id/200705015 [13] SOPHI ANOPOULOS D S. Nonlinear stability of si mplifiedstructural models si mulating elastic shell panels of revolutionunder step loading[J]. International Journal of Solids andStructures, 2001, 38 (5): 915-934. -