Safety analysis of railway vehicle in leakage process of air spring
-
摘要: 建立了具有刚度衰变特性的空气弹簧失气模型和非线性粘滑接触模型, 结合车辆系统动力学, 模拟空气弹簧失气动态过程与失气后的应急状态, 分析了空气弹簧失气后车辆系统的稳定性与空气弹簧突然失气对车辆动力学性能的影响, 研究了不同失气过程时长、运行速度与曲线通过工况下空气弹簧失气车辆的安全性。计算结果表明: 空气弹簧失气后车辆临界速度由623 km·h-1大幅降低为351 km·h-1。空气弹簧突然失气导致轮轨垂向力减小, 轮重减载率增大, 且失气过程越短, 轮重减载率越大, 失气过程为0.2 s时轮重减载率达到0.651。车辆运行速度低于300 km·h-1时, 车速对轮重减载率和轮轨力影响不明显, 当大于300 km·h-1时, 减载率随车速增大迅速增大。车辆通过曲线时, 在圆曲线上失气最危险, 轮重减载率最大为0.652。Abstract: The leakage model of air spring with stiffness decay characteristics and the nonlinear stick-slip contact model were established.The dynamic process in loss of gas and the state of emergency after loss of gas were simulated by combining the two models with vehicle system dynamics.The stability of vehicle system with air spring failure was analyzed.The impact of air spring's sudden leakage on the dynamics performance of vehicle was simulated.The running safeties of vehicle under different times of loss of gas, different speeds and curve negotiation conditions were studied.Analysis result shows that the critical speed of vehicle system with air spring failure significantly decreases from 623 km·h-1 to 351 km·h-1.Because of air spring's sudden leakage, wheel-rail vertical force decreases and reduction rate of wheel load increases.The shorter the leakage process is, the greater reduction rate of wheel load is.It reaches 0.651 when the leakage time is 0.2 s.The influence of speed on reduction rate of wheel load and wheel-rail force is not obvious when vehicle speed is less than 300 km·h-1.But, when it is greater than 300 km·h-1, reduction rate of wheel load increases rapidly with speed increase.Leakage occuring on circular curve is most dangerous when vehicle runs, and the maximum of reduction rate of wheel load is 0.652.
-
Key words:
- vehicle engineering /
- air spring /
- leakage process /
- vehicle dynamics /
- stick-slip model /
- stiffness decay /
- running security
-
表 1 仿真参数
Table 1. Simulation parameters
表 2 不同工况的动力学指标
Table 2. Dynamics indices under different cases
-
[1] 姚小强. 空气弹簧的运用检修及故障分析[J]. 铁道车辆, 2003, 41(3): 37-39. doi: 10.3969/j.issn.1002-7602.2003.03.015YAO Xiao-qiang. Operation, inspection, repair and trouble analysis of air spring[J]. Rolling Stock, 2003, 41(3): 37-39. (in Chinese). doi: 10.3969/j.issn.1002-7602.2003.03.015 [2] 严波. 25T型客车空气弹簧运用常见故障分析及处理方法[J]. 机械管理开发, 2011(2): 114, 117. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGL201102050.htmYAN Bo. Failure analysis and processing method of25Tpas-senger air spring[J]. Mechanical Management and Develop-ment, 2011(2): 114, 117. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSGL201102050.htm [3] 张忠平, 王文生, 丁国宾, 等. 空气弹簧漏风故障的调查分析和研究[J]. 铁道机车车辆, 2004, 24(3): 61-63. doi: 10.3969/j.issn.1008-7842.2004.03.021ZHANG Zhong-ping, WANG Wen-sheng, DING Guo-bin, et al. Investigation, analysis and studying of the trouble that the air spring leaks out[J]. Railway Locomotive and Car, 2004, 24(3): 61-63. (in Chinese). doi: 10.3969/j.issn.1008-7842.2004.03.021 [4] 邬平波, 薛世海, 杨晨辉. 基于弹性车体模型的高速客车动态响应[J]. 交通运输工程学报, 2005, 5(2): 5-8. doi: 10.3321/j.issn:1671-1637.2005.02.002WU Ping-bo, XUE Shi-hai, YANG Chen-hui. Dynamic response of high-speed passenger car based on flexible car body model[J]. Journal of Traffic and Transportation Engineering, 2005, 5(2): 5-8. (in Chinese). doi: 10.3321/j.issn:1671-1637.2005.02.002 [5] 池茂儒, 张卫华, 曾京, 等. 高速客车转向架悬挂参数分析[J]. 大连交通大学学报, 2007, 28(3): 13-19. doi: 10.3969/j.issn.1673-9590.2007.03.004CHI Mao-ru, ZHANG Wei-hua, ZENG Jing, et al. Study of suspension parameter of high speed passenger car bogies[J]. Journal of Dalian Jiaotong University, 2007, 28(3): 13-19. (in Chinese). doi: 10.3969/j.issn.1673-9590.2007.03.004 [6] 刘增华, 李芾, 傅茂海, 等. 铁道车辆空气弹簧系统最优控制策略及方法研究[J]. 铁道学报, 2006, 28(1): 26-30. doi: 10.3321/j.issn:1001-8360.2006.01.006LIU Zeng-hua, LI Fu, FU Mao-hai, et al. Study on the opti-mal control tactics and method about rail vehicle air spring systems[J]. Journal of the China Railway Society, 2006, 28(1): 26-30. (in Chinese). doi: 10.3321/j.issn:1001-8360.2006.01.006 [7] 刘增华, 李芾, 黄运华. 空气弹簧系统垂向刚度特性的有限元分析[J]. 西南交通大学学报, 2006, 41(6): 700-704 doi: 10.3969/j.issn.0258-2724.2006.06.007LIU Zeng-hua, LI Fu, HUANG Yun-hua. Finite element analysis of vertical stiffness of air spring system[J]. Journal of Southwest Jiaotong University, 2006, 41(6): 700-704.(in Chinese). doi: 10.3969/j.issn.0258-2724.2006.06.007 [8] 李芾, 付茂海, 黄运华, 等. 车辆空气弹簧动力学参数特性研究[J]. 中国铁道科学, 2003, 24(5): 91-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200305018.htmLI Fu, FU Mao-hai, HUANG Yun-hua, et al. Research on car air spring dynamics parameter traits[J]. China Railway Science, 2003, 24(5): 91-95. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200305018.htm [9] 原亮明, 宫相太, 刘爽堃, 等. 铁道车辆空气弹簧垂向动态特性分析方法的研究[J]. 中国铁道科学, 2004, 25(4): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200404006.htmYUAN Liang-ming, GONG Xiang-tai, LIU Shuang-kun, et al. Study on vertical dynamic characteristics analysis method for railway vehicle air spring[J]. China Railway Science, 2004, 25(4): 37-41. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200404006.htm [10] 罗仁, 曾京, 邬平波. 空气弹簧对车辆曲线通过性能的影响[J]. 交通运输工程学报, 2007, 7(5): 15-18. http://transport.chd.edu.cn/article/id/200705004LUO Ren, ZENG Jing, WU Ping-bo. Influence of air spring on curve negotiating property of vehicle[J]. Journal of Traffic and Transportation Engineering, 2007, 7(5): 15-18. (in Chinese). http://transport.chd.edu.cn/article/id/200705004 [11] 赵洪伦, 沈钢, 张广世. 基于空气弹簧非线性横向刚度的高速客车动力学仿真[J]. 同济大学学报: 自然科学版, 2002, 30(11): 1388-1392. doi: 10.3321/j.issn:0253-374X.2002.11.022ZHAO Hong-lun, SHEN Gang, ZHANG Guang-shi. Dynamic simulation study of high speed railway car based on nonlinear lateral stiffness of air spring[J]. Journal of Tongji University: Natural Science, 2002, 30(11): 1388-1392. (in Chinese). doi: 10.3321/j.issn:0253-374X.2002.11.022 [12] TOYOFUKU K, YAMADA C, KAGAWA T, et al. Study on dynamic characteristic analysis of air spring with auxiliary chamber[J]. JSAE Review, 1999, 20(3): 349-355. doi: 10.1016/S0389-4304(99)00032-6 [13] LIU H, LEE J C. Model development and experimental research on an air spring with auxiliary reservoir[J]. International Journal of Automotive Technology, 2011, 12(6): 839-847. https://www.infona.pl/resource/bwmeta1.element.springer-9818cb64-584c-38c2-8f94-22c152d06980 [14] NETTER H, SCHUPP G, RULKA W, et al. New aspects of contact modelling and validation within multibody system simula-tion of railway vehicles[J]. Vehicle System Dynamics, 1998, 29(Sup): 246-269. doi: 10.1080/00423119808969563 [15] OESTREICH M, HINRICHS N, POPP K. Bifurcation and sta-bility analysis for a non-smooth friction oscillator[J]. Archive of Applied Mechanics, 1996, 66(5): 301-314. doi: 10.1007/BF00795247 -