Gradation fractal characteristic and mechanical indexes of super large stone asphalt mixture
-
摘要: 为了定量评价超大粒径沥青混合料(SLSM)的级配特性, 运用分形理论提出了SLSM集料质量分形分布函数的计算方法, 得到了不同级配SLSM-40的质量分形维数, 建立了集料质量分布与分形维数的关联模型, 分析了分形维数与SLSM-40体积指标的关系, 并通过强度试验和简单性能试验研究了SLSM-40的力学指标。分析结果表明: 分形维数在2.60左右时, SLSM-40的体积指标均符合技术要求; 分形维数在2.55~2.60之间时, SLSM-40的级配均匀性良好; 随着粒径增大, 粘聚力增大, SLSM-40中粘聚力对整体强度贡献率约为50%, 比普通沥青混合料提高了1~2倍, 而内摩擦角减小5°~10°; 20℃试验条件下, SLSM-40抗压回弹模量比AC-25提高了1 869MPa, 为AC-25的2.6倍; 不同试验温度条件下, 随着加载频率的增大, SLSM-40的动态模量逐渐增大, 相位角随温度和加载频率的变化规律与动态模量相比差异较大, 并且温度越高, 动态模量指标越小, SLSM-40的抗永久变形能力下降。Abstract: In order to quantificationally evaluate the gradation characteristic of super large stone asphalt mixture(SLSM), a method was put forward to calculate the aggregate mass fractal distribution function of SLSM based on fractal theory. The values of mass fractal dimension were obtained for SLSM-40 with different gradations, and a relational model between aggregate mass distribution and fractal dimension was established. The relationship between fractal dimension and the volume indexes of SLSM-40 was analyzed, and the mechanical indexes of SLSM-40 were studied by using strength test and simple performance test. Analysis result shows that all the volume indexes of SLSM-40 satisfy technical requirements when fractal dimension is about 2.60. SLSM-40 has good gradation homogeneity when fractal dimension is 2.55-2.60. Cohesion increases with the increase of particle size, and the contribution rate of SLSM-40 cohesion to overall strength is about 50%, which increases by 1-2 times compared with ordinary asphalt mixture, and internal friction angles reduce by 5°-10°. The compression rebound modulus of SLSM-40 increases by 1 869 MPa at 20 ℃, which is 2.6 times compared with AC-25. The dynamic modulus of SLSM-40 increases with the increase of loading frequency at different temperatures, and the change law of phase angle has larger difference compared with that of dynamic modulus at different temperatures and loading frequencies. Dynamic modulus index decreases with the increase of temperature, and the resistance to permanent deformation ability of SLSM-40 declines.
-
表 1 SLSM-40矿料级配
Table 1. Aggregate gradations of SLSM-40
筛孔尺寸/mm 各级配不同尺寸筛孔通过率/% G1 G2 G3 G4 G5 G6 G7 53 100.0 100.0 100.0 100.0 100.0 100.0 100.0 37.5 85.8 93.0 95.6 98.0 95.0 96.9 96.0 31.5 76.6 77.0 82.0 90.0 90.0 84.7 78.0 26.5 66.0 61.0 71.0 85.5 76.0 74.5 66.0 19 43.2 43.0 60.0 68.0 55.0 58.6 52.0 16 29.0 29.0 32.7 57.5 50.0 54.5 43.0 9.5 28.0 28.0 30.0 46.0 33.0 43.0 32.0 4.75 27.0 27.0 27.0 29.5 26.0 30.5 30.0 2.36 24.0 24.0 24.0 26.5 24.0 20.3 28.0 1.18 22.0 22.0 20.0 18.5 22.0 14.9 16.0 0.6 17.5 17.5 16.5 12.5 15.0 11.7 11.0 0.3 14.5 14.5 13.5 9.0 11.0 8.8 8.0 0.15 10.5 10.5 10.5 6.0 7.0 6.2 5.0 0.075 4.5 4.5 4.5 3.6 4.5 5.0 3.0 表 2 SLSM-40各级配的参数值
Table 2. Parameter values of SLSM-40 gradations
参数值 G1 G2 G3 G4 G5 G6 G7 3-D 0.362 7 0.364 3 0.393 6 0.505 3 0.438 6 0.476 4 0.498 6 D 2.637 3 2.635 7 2.606 4 2.494 7 2.561 4 2.523 6 2.501 4 R2 0.889 9 0.884 2 0.920 7 0.994 5 0.972 1 0.994 2 0.978 6 表 3 SLSM-40的分形维数与对应的体积指标
Table 3. D values and corresponding volume indexes of SLSM-40
指标 取值 分形维数 2.494 7 2.501 4 2.523 6 2.561 4 2.606 4 2.635 7 2.637 3 空隙率/% 5.90 5.20 4.90 5.09 3.60 4.60 6.80 矿料间隙率/% 12.00 12.39 13.40 12.53 11.90 11.73 13.03 沥青饱和度/% 50.8 58.1 64.5 59.4 69.7 60.8 47.8 粉胶比 1.15 1.18 1.23 1.20 1.24 1.30 1.30 表 4 无侧限抗压试验结果
Table 4. Result of unconfined compression test
级配类型 试件编号 旋转压实试件高度/mm 试件破坏时最大荷载/N 试件抗压强度/MPa 抗压强度均值/MPa G1-37.5 1 150 38 500 2.18 2.18 2 150 40 000 2.26 3 150 37 000 2.09 G2-37.5 1 150 32 000 2.03 1.98 2 150 29 000 1.94 3 150 35 000 1.98 G4-37.5 1 150 23 000 1.30 1.40 2 150 26 000 1.47 3 150 25 500 1.44 G5-37.5 1 150 26 000 1.47 1.41 2 150 24 000 1.36 3 150 24 500 1.39 表 5 劈裂试验结果
Table 5. Result of splitting test
级配类型 试件编号 旋转压实试件高度/mm 试验荷载最大值/N 劈裂抗拉强度/MPa 劈裂抗拉强度均值/MPa G1-37.5 1 110.7 9 590 0.37 0.41 2 110.2 10 430 0.40 3 110.3 11 730 0.45 G2-37.5 1 111.5 11 570 0.44 0.45 2 110.8 12 140 0.47 3 110.2 11 630 0.45 G4-37.5 1 110.0 12 050 0.47 0.42 2 110.5 10 210 0.39 3 110.3 10 370 0.40 G5-37.5 1 110.3 9 210 0.35 0.36 2 110.6 9 040 0.35 3 110.2 9 950 0.38 表 6 不同类型沥青混合料强度参数
Table 6. Strength parameters of different asphalt mixtures
级配类型 参数 c/MPa φ/(°) tan(φ) σ/MPa σtan(φ) τ/MPa c贡献率/% σtan(φ)贡献率/% AC-13 0.096 44.8 0.993 0.232 0.230 0.326 29.4 70.6 AC-16 0.135 42.7 0.923 0.328 0.303 0.438 30.7 69.3 细粒式AM 0.099 42.9 0.929 0.239 0.222 0.321 30.8 69.2 中粒式AM 0.076 44.0 0.965 0.184 0.178 0.254 29.9 70.1 ATB-25 0.185 45.0 1.000 0.289 0.289 0.474 39.1 60.9 LSM-30 0.224 42.0 0.900 0.317 0.285 0.509 44.0 56.0 G1-37.5 0.353 43.1 0.936 0.300 0.281 0.634 55.7 44.3 G2-37.5 0.279 39.2 0.816 0.245 0.524 53.2 46.8 G4-37.5 0.206 37.5 0.767 0.230 0.436 47.2 52.8 G5-37.5 0.211 36.4 0.737 0.221 0.432 48.8 51.2 G1-53 0.332 41.1 0.870 0.261 0.593 56.0 44.0 G2-53 0.362 44.2 0.972 0.292 0.654 55.4 44.6 G3-53 0.283 41.8 0.894 0.268 0.551 51.4 48.6 表 7 SLSM-40的动态模量
Table 7. Dynamic modului of SLSM-40
MPa 温度/℃ 频率/Hz 0.2 0.5 1.0 2.0 5.0 10.0 20.0 25.0 5 16 216 18 443 19 801 20 967 22 477 23 413 23 987 24 169 20 4 713 6 378 7 737 9 018 10 577 11 325 11 889 10 455 40 639 923 1 294 1 807 2 718 3 665 4 802 4 960 表 8 SLSM-40的相位角
Table 8. Phase angles of SLSM-40
(°) 温度/℃ 频率/Hz 0.2 0.5 1.0 2.0 5.0 10.0 20.0 25.0 5 17.61 15.49 13.98 12.54 10.81 9.71 8.72 8.19 20 25.75 25.32 24.70 24.29 24.05 23.65 22.15 23.23 40 19.81 22.15 23.78 25.52 27.80 29.25 30.32 32.01 表 9 SLSM-40的E*/sin(Ф)
Table 9. E*/sin(Ф) of SLSM-40
MPa 温度/℃ 频率/Hz 0.2 0.5 1.0 2.0 5.0 10.0 20.0 25.0 5 53 600 69 056 81 963 96 568 119 843 138 816 158 219 169 659 20 10 848 14 913 18 515 21 922 25 953 28 231 31 533 26 507 40 1 886 2 457 3 209 4 194 5 827 7 500 9 512 9 357 -
[1] YEGGONI M, BUTTON J W, ZOLLINGER D G. Fractals of aggregates correlated with creep in asphalt concrete[J]. Journal of Transportation Engineering, 1996, 122(1): 22-28. doi: 10.1061/(ASCE)0733-947X(1996)122:1(22) [2] 刘建勋, 李波. 基于级配分形的SUPERPAVE混合料设计参数预估[J]. 郑州大学学报: 工学版, 2010, 31(1): 26-29. doi: 10.3969/j.issn.1671-6833.2010.01.007LIU Jian-xun, LI Bo. Prediction of design parameters for SUPERPAVE mixtures based on the fractal law of aggregate gradation[J]. Journal of Zhengzhou University: Engineering Science, 2010, 31(1): 26-29. (in Chinese). doi: 10.3969/j.issn.1671-6833.2010.01.007 [3] 黄继成, 黄彭. 沥青混合料集料分维数值和矿料间隙率的关系[J]. 同济大学学报: 自然科学版, 2007, 35(11): 1481-1485, 1501. doi: 10.3321/j.issn:0253-374X.2007.11.008HUANG Ji-cheng, HUANG Peng. Numerical value relations of asphalt mixture aggregates' fractal dimensions and voids in mineral aggregate[J]. Journal of Tongji University: Natural Science, 2007, 35(11): 1481-1485, 1501. (in Chinese). doi: 10.3321/j.issn:0253-374X.2007.11.008 [4] 杨瑞华, 许志鸿. 密级配沥青混合料集料分形分维与路用性能的关系[J]. 土木工程学报, 2007, 40(3): 98-103, 109. doi: 10.3321/j.issn:1000-131X.2007.03.017YANG Rui-hua, XU Zhi-hong. Relationship between fractal dimension and road performance of dense-gradation asphalt mixture[J]. China Civil Engineering Journal, 2007, 40(3): 98-103, 109. (in Chinese). doi: 10.3321/j.issn:1000-131X.2007.03.017 [5] 付其林, 陈拴发, 陈华鑫. 开级配大粒径沥青碎石混合料的高温稳定性[J]. 长安大学学报: 自然科学版, 2010, 30(2): 20-23. doi: 10.3969/j.issn.1671-8879.2010.02.005FU Qi-lin, CHEN Shuan-fa, CHEN Hua-xin. High temperature stability of open-graded large stone asphalt mixes[J]. Journal of Chang'an University: Natural Science Edition, 2010, 30(2): 20-23. (in Chinese). doi: 10.3969/j.issn.1671-8879.2010.02.005 [6] 黄宝涛, 田伟平, 李家春, 等. 沥青路面抗滑性能定量评价的分形方法[J]. 中国公路学报, 2008, 21(4): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200804002.htmHUANG Bao-tao, TIAN Wei-ping, LI Jia-chun, et al. Fractal method based on quantitative evaluation of asphalt pavement anti-slide performance[J]. China Journal of Highway and Transport, 2008, 21(4): 12-17. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200804002.htm [7] 黄宝涛, 梁轶, 崔娥, 等. 沥青混合料抗车辙性能的分形描述方法[J]. 交通运输工程学报, 2007, 7(6): 59-63. doi: 10.3321/j.issn:1671-1637.2007.06.012HUANG Bao-tao, LIANG Yi, CUI E, et al. Fractal description method of asphalt mixture rut resistance[J]. Journal of Traffic and Transportation Engineering, 2007, 7(6): 59-63. (in Chinese). doi: 10.3321/j.issn:1671-1637.2007.06.012 [8] 蒋双全, 张争奇, 杨博. 分形几何理论在沥青混合料研究中的应用[J]. 公路, 2009(10): 198-203. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200910046.htmJIANG Shuang-quan, ZHANG Zheng-qi, YANG bo. Application of fractal geometry theory to study on asphalt mixture[J]. Highway, 2009(10): 198-203. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200910046.htm [9] 陈国明, 周纯秀, 谭忆秋. 粗集料表面纹理的分形评定及沥青混合料性能试验[J]. 交通运输工程学报, 2009, 9(4): 1-5. http://transport.chd.edu.cn/article/id/200904001CHEN Guo-ming, ZHOU Chun-xiu, TAN Yi-qiu. Fractal evaluation of surface texture for coarse aggregate and performance test of asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2009, 9(4): 1-5. (in Chinese). http://transport.chd.edu.cn/article/id/200904001 [10] AMIN J S, AYATOLLAHI S, ALAMDARI A. Fractal characteristics of an asphaltene deposited heterogeneous surface[J]. Applied Surface Science, 2009, 256(1): 67-75. doi: 10.1016/j.apsusc.2009.07.071 [11] KOKKALIS A G, TSOHOS G H, PANAGOULI O K. Consideration of fractals potential in pavement skid resistance evaluation[J]. Journal of Transportation Engineering, 2002, 128(6): 591-595. doi: 10.1061/(ASCE)0733-947X(2002)128:6(591) [12] EL GENDY A, SHALABY A. Mean profile depth of pavement surface macrotexture using photometric stereo techniques[J]. Journal of Transportation Engineering, 2007, 133(7): 433-440. doi: 10.1061/(ASCE)0733-947X(2007)133:7(433) [13] LEONARDI G. Fractal dimension for the characterization of the porosity of asphalt concretes[J]. Archives of Civil Engineering, 2010, 56(4): 321-333. doi: 10.2478/v.10169-010-0018-5 [14] 刘中林, 王富玉, 郝培文, 等. 大粒径沥青混合料组成结构的研究[J]. 土木工程学报, 2004, 37(7): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200407010.htmLIU Zhong-lin, WANG Fu-yu, HAO Pei-wen, et al. Study on composition and structure of LSAM[J]. China Civil Engineering Journal, 2004, 37(7): 59-63. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200407010.htm [15] 王富玉, 任立锋, 刘元烈. 大粒径沥青混合料的路用性能研究[J]. 公路交通科技, 2003, 20(5): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200305002.htmWANG Fu-yu, REN Li-feng, LIU Yuan-lie. Study on pavement performance of LSAM[J]. Journal of Highway and Transportation Research and Development, 2003, 20(5): 6-9. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200305002.htm [16] ZHAO Yong-li, HUANG Xiao-ming. Design method and performance for large stone porous asphalt mixtures[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2010, 25(5): 871-876. -