Characteristics and energies in different frequency bands of environmental noise in urban elevated rail
-
摘要: 测试了某城市地铁1号线一期高架线路普通整体道床无声屏障和道床垫式浮置板道床全声屏障区段的桥侧环境噪声, 分析了桥侧各测点的A计权总声压级与1/3频程线性声压级, 绘制了线性声压级云图, 研究了各频段噪声能量比例。分析结果表明: 道床垫式浮置板道床全声屏障能有效降低噪声源强处与桥侧环境噪声, 降噪效果、能量分布与频段和测点位置有关; 在桥面高度相近的测点, 降噪效果随距线路中心线距离的增大而减小, 而在近地面的测点, 降噪效果随距线路中心线距离的增大而增大; 降噪效果在中高频段明显大于低频段; 在1/3频程中心频率为20.0~31.5 Hz时, 距离线路中心线55.0 m处, 道床垫式浮置板道床全声屏障区段的线性声压级较普通整体道床无声屏障区段大0.82~6.96 dB; 在普通整体道床无声屏障区段, 在高出地面1.2、9.8 m处, 噪声能量以低于200 Hz为主, 在高出地面11.3 m处, 噪声能量以250~400 Hz为主, 在高出地面12.8 m处, 噪声能量以400~1 000 Hz为主; 在高出地面11.3 m处与200 Hz以下范围内, 普通整体道床无声屏障和道床垫式浮置板道床全声屏障区段的噪声能量持平; 在道床垫式浮置板道床全声屏障区段, 低于200 Hz的桥侧噪声能量较高, 因此, 建议根据高架桥旁敏感点的具体位置采取针对性减振降噪措施, 并重点关注低频噪声失去中高频噪声的遮蔽后尤显突出的问题。Abstract: The environmental noises of bridge side of the first stage elevated line of Metro Line 1 in a city were compared and tested, where the common monolithic track beds without sound barrier and the slab mat track bed with closed sound barrier were used separately.The Aweighted total sound pressure level and 1/3 octave linear sound pressure level of each measuring point on the bridge side were analyzed.The linear sound pressure level cloud diagrams were plotted.Noise energy ratio in each frequency band was studied.Analysis result shows that the slab mat track bed with closed sound barrier can effectively reduce the noise at the noise source strength point and the environmental noise on the bridge side.The noise reduction effect and energy distribution are related to the locations of frequency band and measuring point.At measuring points of similar bridge height, the noise reduction effect decreases with the increase ofthe distance from the centerline of line, while the noise reduction effect at the near-ground point increases with the increase of the distance from the centerline of line.The noise reduction effect of slab track mattress with closed sound barrier is significantly higher in mid-high frequency range than in low frequency range.When the center frequency of the 1/3 octave is 20.0-31.5 Hz, 55.0 m away from the centerline of line, the linear sound pressure level of slab mat track bed with closed sound barrier is 0.82-6.96 dB higher than that of common monolithic track bed without sound barrier.In the section of common monolithic track bed without sound barrier, the noise energy is mainly below 200 Hz above the ground of 1.2 and 9.8 m, in 250-400 Hz above the ground of 11.3 m, in 400-1 000 Hz above the ground of 12.8 m.Above the ground of 11.3 m, below 200 Hz, the noise energies are nearly equal between the common monolithic track bed without sound barrier and the slab mat track bed with closed sound barrier.In the slab mat track bed area with closed sound barrier, the noise energy below 200 Hz at the bridge side is higher.Therefore, it is recommended to take targeted measures for vibration reduction and noise reduction according to the locations of sensitive points beside the elevated bridge, and to focus on the problems that low frequency noise appears prominently after it has lost the shielding of medium and high-frequency noise.
-
Key words:
- urban rail transit /
- environmental noise /
- elevated bridge /
- 1/3 octave /
- noise energy /
- low frequency
-
表 1 测试现场条件
Table 1. Test site conditions
表 2 桥侧噪声A计权总声压级
Table 2. A-weighted total sound pressure level of bridge side dB
-
[1] ALVES-PEREIRA M, BRANCO N A A C. Public health and noise exposure: the importance of low frequency noise[C]∥Turkish Acoustical Society. 36th International Congress and Exhibition on Noise Control Engineering. Istanbul: Turkish Acoustical Society, 2007: 3460-3469. [2] WAVE K P, RYLANDER R. The prevalence of annoyance and effects after long-term exposure to low-frequency noise[J]. Journal of Sound and Vibration, 2001, 240 (3): 483-497. doi: 10.1006/jsvi.2000.3251 [3] WAVE K P, RYLANDER R, BENTON S, et al. Effects on performance and work quality due to low frequency ventilation noise[J]. Journal of Sound and Vibration, 1997, 205 (4): 467-474. doi: 10.1006/jsvi.1997.1013 [4] 孟苏北. 城市住宅区低频噪声对人类健康的危害[J]. 中国医药导报, 2007, 4 (35): 17-19. doi: 10.3969/j.issn.1673-7210.2007.35.008MENG Su-bei. Harm to human health from low frequency noise in city residential area[J]. China Medical Herald, 2007, 4 (35): 17-19. (in Chinese). doi: 10.3969/j.issn.1673-7210.2007.35.008 [5] BERGLUND B, LINDVALL T, SCHEWELA D H. Guidelines for community noise[R]. Geneva: World Health Organization, 2000. [6] 贾丽, 卢向明, 翟国庆, 等. 用社会声学调查方法研究居住区噪声烦恼阀值[J]. 中国环境科学, 2008, 28 (10): 955-960. doi: 10.3321/j.issn:1000-6923.2008.10.018JIA Li, LU Xiang-ming, DI Guo-qing, et al. Investigation on the noise annoyance threshold in residential areas by socioacoustic surveys[J]. China Environmental Science, 2008, 28 (10): 955 -960. (in Chinese). doi: 10.3321/j.issn:1000-6923.2008.10.018 [7] 蒋伟康, 闫肖杰. 城市轨道交通噪声的声源特性研究进展[J]. 环境污染与防治, 2009, 31 (12): 64-69. doi: 10.3969/j.issn.1001-3865.2009.12.028JIANG Wei-kang, YAN Xiao-jie. Some investigation of noise from urban railway transit[J]. Environmental Pollution and Control, 2009, 31 (12): 64-69. (in Chinese). doi: 10.3969/j.issn.1001-3865.2009.12.028 [8] 李洪强, 吴小萍. 城市轨道交通噪声及其控制研究[J]. 噪声与振动控制, 2007, 27 (5): 78-82. doi: 10.3969/j.issn.1006-1355.2007.05.022LI Hong-qiang, WU Xiao-ping. Study on noise and control measures caused by urban rail transit[J]. Noise and Vibration Control, 2007, 27 (5): 78-82. (in Chinese). doi: 10.3969/j.issn.1006-1355.2007.05.022 [9] 王巧燕, 翟国庆, 朱艺婷, 等. 不同行驶条件下轨道交通噪声频率特性比较研究[J]. 噪声与振动控制, 2008, 28 (2): 85-86, 106. doi: 10.3969/j.issn.1006-1355.2008.02.025WANG Qiao-yan, DI Guo-qing, ZHU Yi-ting, et al. Study of frequency characteristics of rail traffic noise on different running conditions[J]. Noise and Vibration Control, 2008, 28 (2): 85-86, 106. (in Chinese). doi: 10.3969/j.issn.1006-1355.2008.02.025 [10] 雷晓燕, 刘林芽, 练松良. 轨道交通噪声计算方法研究[J]. 噪声与振动控制, 2006, 26 (1): 49-51, 59. doi: 10.3969/j.issn.1006-1355.2006.01.015LEI Xiao-yan, LIU Lin-ya, LIAN Song-liang. The study of the calculational methods on noises induced by the rail transit[J]. Noise and Vibration Control, 2006, 26 (1): 49-51, 59. (in Chinese). doi: 10.3969/j.issn.1006-1355.2006.01.015 [11] 张博, 黄震宇, 陈大跃. 高架桥轨道系统的噪声源识别[J]. 噪声与振动控制, 2006, 26 (1): 46-48, 63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK200601015.htmZHANG Bo, HUANG Zhen-yu, CHEN Da-yue. Identification on the source of the noise from viaduct transportation system[J]. Noise and Vibration Control, 2006, 26 (1): 46-48, 63. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK200601015.htm [12] REMINGTON P J. Wheel/rail noise—part IV: rolling noise[J]. Journal of Sound and Vibration, 1976, 46 (3): 419-436. doi: 10.1016/0022-460X(76)90864-6 [13] THOMPSON D J, JONES C J C. A review of the modelling of wheel/rail noise generation[J]. Journal of Sound and Vibration, 2000, 231 (3): 519-536. [14] TALOTTE C, GAUTIER P E, THOMPSON D J, et al. Identification, modelling and reduction potential of railway noise sources: a critical survey[J]. Journal of Sound and Vibration, 2003, 267 (3): 447-468. doi: 10.1016/S0022-460X(03)00707-7 [15] THOMPSON D J. The influence of the contact zone on the excitation of wheel/rail noise[J]. Journal of Sound and Vibration, 2003, 267 (3): 523-535. doi: 10.1016/S0022-460X(03)00712-0 [16] KITAGAWA T, THOMPSON D J. Comparison of wheel/rail noise radiation on Japanese railways using the TWINS model and microphone array measurements[J]. Journal of Sound and Vibration, 2006, 293 (3-5): 496-509. doi: 10.1016/j.jsv.2005.08.037 [17] FORD R A J, THOMPSON D J. Simplified contact filters in wheel/rail noise prediction[J]. Journal of Sound and Vibration, 2006, 293 (3-5): 807-818. [18] SHENG X, THOMPSON D J, JONES C J C, et al. Simulations of roughness initiation and growth on railway rails[J]. Journal of Sound and Vibration, 2006, 293 (3-5): 819-829. [19] SONG X D, WU D J, LI Q, et al. Structure-borne lowfrequency noise from multi-span bridges: aprediction method and spatial distribution[J]. Journal of Sound and Vibration, 2016, 367: 114-128. [20] ZHANG Xun, LI Xiao-zhan, HAO Hong, et al. A case study of interior low-frequency noise from box-shaped bridge girders induced by running trains: its mechanism, prediction and countermeasures[J]. Journal of Sound and Vibration, 2016, 367: 129-144. [21] NGAI K W, NG C F, LEE R Y Y. Noise and vibration spectrum of structure-borne noise from railway system[J]. HKIE Transactions Hong Kong Institution of Engineers, 2002, 9 (2): 12-17. [22] NGAI K W, NG C F. Structure-borne noise and vibration of concrete box structure and rail viaduct[J]. Journal of Sound and Vibration, 2002, 255 (2): 281-297. [23] 刘海平. 高速铁路轮轨滚动噪声建模、预测与控制研究[D]. 上海: 上海交通大学, 2011.LIU Hai-ping. A study on modelling, prediction and its control of wheel/rail rolling noises in high speed railway[D]. Shanghai: Shanghai Jiaotong University, 2011. (in Chinese). [24] 马心坦. 轮轨滚动噪声预测与控制研究[D]. 北京: 北京交通大学, 2007.MA Xin-tan. Investigation on prediction and control of railway wheel-rail rolling noise[D]. Beijing: Beijing Jiaotong University, 2007. (in Chinese). [25] LANDSTROM U, AKERLUND E, KJELLBERG A, et al. Exposure levels, tonal components, and noise annoyance in working environments[J]. Environment International, 1995, 21 (3): 265-275.