-
摘要: 为高效预测动态环境下人-车系统的人体振动响应特性及汽车乘坐舒适性, 依据人-车-路系统间的相互作用和多体动力学原理, 建立了9自由度汽车乘坐动力学模型, 应用拉格朗日原理推导了乘坐动力学方程。基于路面不平度激励及汽车行驶速度变化, 构建了路面随机激励的时域模型。利用MATLAB/Simulink仿真工具, 建立了人-车-路系统仿真模型, 并对某轻型车辆在不同路面、不同车速下的人体振动响应进行了仿真分析。仿真结果表明: 在同样车速下, 随着路面等级的降低, 人体各部位的加速度响应幅值明显增大; 当车辆行驶在随机路面上时, 路面不平度随机激励引起的人体振动能量主要集中在低频段, 约在5 Hz出现第1阶共振频率, 大约在10 Hz出现第2阶峰值, 这与众多试验结果一致。可见, 9自由度汽车乘坐动力学模型及其仿真模型, 不仅能快速计算动态激励下人体的振动特性和乘坐舒适性, 而且具有较好的可信度。
-
关键词:
- 汽车工程 /
- 9自由度乘坐动力学模型 /
- 人体振动特性 /
- 仿真
Abstract: To predict the human vibration response characteristics and riding comfort of human-vehicle system efficiently, a 9-DOF riding dynamics model of automobile was established according to human-vehicle-road interaction and multi-body dynamics principle.The dynamics equations of the model were derived by using Lagrange Principle.A time domain model of random road excitation was established according to random road excitation and the change of vehicle speed.A human-vehicle-road system simulation model was established by using MATLAB/Simulink, and the simulation and analysis of human vibration response in a light vehicle on different roads and at different speeds were carried out.Simulation result shows that the amplitude of human acceleration response significantly increases with the drop of road level at the same speed.On random road, the energy of human vibration caused by random road excition concentrates in low frequency, the first order resonance frequency appears around 5 Hz, and the second order resonance frequency occurs around 10 Hz, which is consistent with many experimental results.Therefore, the 9-DOF dynamics model and the simulation model are reliable to quickly compute the vibration characteristics of human and riding comfort under dynamic environment. -
表 1 表 1α和ρ参数值
Table 1. Values ofαandρ
路面等级 A B C D E α/(m-1) 0.132 0 0.130 3 0.120 0 0.100 7 0.090 0 ρ/m 0.001 5 0.003 2 0.006 0 0.011 5 0.022 0 表 2 人-车参数值
Table 2. Parameters of human-vehicle
计算参数 数值 计算参数 数值 mb/kg 690.00 kp3/(kN·m-1) 111.54 Jb/(kg·m2) 1 222 kp4/(kN·m-1) 700.37 mfs/kg 40.50 ks/(kN·m-1) 20.11 mrs/kg 45.40 cfs/(kN·s·m-1) 1.50 mp1/kg 5.31 crs/(kN·s·m-1) 1.50 mp2/kg 24.14 cft/(N·s·m-1) 0.00 mp3/kg 10.45 crt/(N·s·m-1) 0.00 mp4/kg 15.60 cp1/(kN·s·m-1) 4.00 ms/kg 104.00 cp2/(kN·s·m-1) 4.00 kfs/(kN·m-1) 17.00 cp3/(kN·s·m-1) 4.00 krs/(kN·m-1) 22.00 cp4/(kN·s·m-1) 2.70 kft/(kN·m-1) 192.00 cs/(kN·s·m-1) 0.66 krt/(kN·m-1) 192.00 l1/m 1.25 kp1/(kN·m-1) 309.95 l2/m 1.51 kp2/(kN·m-1) 150.01 l3/m 0.31 表 3 加速度、人的主观感觉和汽车乘坐舒适性
Table 3. Corresponding values of acceleration, human subjective sensation and vehicle riding comfort
加权加速度/(m·s-2) < 0.315 0.315~0.63 0.5~1.0 0.8~1.6 1.25~2.5 > 2.0 人的主观感受 没有不舒适 稍有不舒适 有些不舒适 不舒适 很不舒适 极不舒适 汽车乘坐舒适度 1.0 0.8 0.6 0.4 0.2 0 表 4 人体各部位的加速度均方根值
Table 4. Acceleration RMS values of human parts
车速/(km·h-1) 路面等级 加速度均方根值az/(m·s-2) 头部 上躯干 下躯干 臀部 30 B 0.113 0 0.112 8 0.110 6 0.107 0 C 0.203 6 0.203 2 0.199 2 0.192 8 D 0.358 2 0.357 5 0.350 6 0.339 2 40 B 0.152 1 0.151 8 0.148 7 0.143 7 C 0.274 1 0.273 6 0.268 1 0.259 1 D 0.482 9 0.482 0 0.472 3 0.456 5 60 B 0.218 4 0.218 0 0.213 2 0.205 7 C 0.394 6 0.393 7 0.385 2 0.371 7 D 0.697 3 0.695 8 0.680 8 0.657 0 90 B 0.292 1 0.291 4 0.284 4 0.273 8 C 0.529 5 0.528 2 0.515 7 0.496 5 D 0.941 8 0.939 5 0.917 4 0.883 4 120 B 0.334 0 0.343 1 0.334 2 0.321 1 C 0.626 4 0.624 6 0.608 6 0.584 8 D 1.122 4 1.119 3 1.091 0 1.048 7 -
[1] 宋一凡, 陈榕峰. 基于路面不平整度的车辆振动响应分析方法[J]. 交通运输工程学报, 2007, 7(4): 39-42. doi: 10.3321/j.issn:1671-1637.2007.04.009SONG Yi-fan, CHEN Rong-feng. Analysis method of vehicle vibration response caused by pavement roughness[J]. Journal of Traffic and Transportation Engineering, 2007, 7(4): 39-42. (in Chinese) doi: 10.3321/j.issn:1671-1637.2007.04.009 [2] 高红华, 陈学东, 钱文军. 汽车平顺性的建模分析及研究[J]. 工程设计学报, 2003, 10(6): 321-325. doi: 10.3785/j.issn.1006-754X.2003.06.004GAO Hong-hua, CHEN Xue-dong, QIAN Wen-jun. Modeling analysis and research of automobile ride[J]. Journal of Engineering Design, 2003, 10(6): 321-325. (in Chinese) doi: 10.3785/j.issn.1006-754X.2003.06.004 [3] 王连明, 宋宝玉, 周岩, 等. 汽车平顺性建模及其仿真分析[J]. 哈尔滨工业大学学报, 1998, 30(5): 80-84.WANG Lian-ming, SONG Bao-yu, ZHOU Yan, et al. Modeling and simulation of automobile ride[J]. Journal of Harbin Institute of Technology, 1998, 30(5): 80-84. (in Chinese) [4] 李晓玲, 张鄂, 陆长德. 人体生物力学模型的驾驶舒适度仿真研究[J]. 西安交通大学学报, 2008, 42(5): 556-560. doi: 10.3321/j.issn:0253-987X.2008.05.010LI Xiao-ling, ZHANG E, LU Chang-de. Driving comfort simulation based on human biomechanics model under vibration[J]. Journal of Xi'an Jiaotong University, 2008, 42(5): 556-560. (in Chinese) doi: 10.3321/j.issn:0253-987X.2008.05.010 [5] 檀润华, 陈鹰, 路甬祥. 路面对汽车激励的时域模型建立及计算机仿真[J]. 中国公路学报, 1998, 11(3): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL803.013.htmTAN Run-hua, CHEN Ying, LU Yong-xiang. The mathematical models in time domain for the road disterbances andthe simulation[J]. China Journal of Highway and Transport, 1998, 11(3): 96-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL803.013.htm [6] 王国权, 余群, 吕伟. 8自由度乘坐动力学模型及时域仿真[J]. 中国农业大学学报, 2002, 7(2): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-NYDX200202020.htmWANG Guo-quan, YU Qun, LU Wei. Eight freedom vehicle ride dynamics mathematical model and simulation in time domain[J]. Journal of China Agricultural University, 2002, 7(2): 99-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYDX200202020.htm [7] ISO 2631—1978, guide for the evaluation of human exposure to whole-body vibration[S]. [8] ISO 2631-1—1997, mechanical vibration and shock—evaluation of human exposure to whole-body vibration—part 1: general requirements[S]. [9] GB/T 7031—2005, 机械振动道路路面谱测量数据报告[S].GB/T 7031—2005, mechanical vibration—road surface profiles—reporting of measured data[S]. (in Chinese) [10] 张鄂, 刘明利, 邵晓春, 等. 动态环境人-车系统的人体振动特性研究与仿真[J]. 工程设计学报, 2009, 16(3): 166-171, 181. https://www.cnki.com.cn/Article/CJFDTOTAL-GCSJ200903001.htmZHANG E, LIU Ming-li, SHAO Xiao-chun, et al. Study and simulation on human body vibration characteristics of human-vehicle systemin dynamic environment[J]. Journal of Engin-eering Design, 2009, 16(3): 166-171, 181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCSJ200903001.htm [11] 张鄂, 刘中华, 计志红, 等. 人-车系统的人体乘坐舒适性仿真及实验研究[J]. 工程设计学报, 2010, 17(2): 107-113. https://www.cnki.com.cn/Article/CJFDTOTAL-GCSJ201002010.htmZHANG E, LIU Zhong-hua, JI Zhi-hong, et al. Simulation and experimental research on human riding comfort in human-vehicle system[J]. Journal of Engineering Design, 2010, 17(2): 107-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCSJ201002010.htm