Design of regenerative braking energy feedback system for ultracapacitor heavy-duty tractor
-
摘要: 针对电动汽车制动能量再生回馈问题, 基于陕汽集团超级电容纯电动重型牵引原型车SX4186EV, 设计了一个新型的复合制动系统, 由独立的制动能量再生回馈与双回路气制动2个子系统并联构成。基于制动强度与实车载荷, 提出一种基于规则的再生制动力与气制动力分配策略。在上海码头牵引车实际行驶工况下, 检验复合制动系统的能量回收效率。试验结果表明: 在满载与空载制动工况下, 制动能量回收效率分别为14.534%与55.617%, 平均值为35.076%, 而铅酸电池与锂电池电动汽车实际回收效率一般仅约为10%, 因此, 超级电容纯电动汽车制动能量回收效率高。Abstract: In view of regenerative braking energy feedback problem for electric vehicle(EV), based on the SX4186EV prototype of ultracapacitor pure-electric heavy-duty tractor of Shaanxi Automobile Group Co., Ltd., a hybrid braking system was proposed. the system was made up of two independent subsystems, including energy recovery braking subsystem and double-loop air braking subsystem. Based on braking intensity and real load, a rule-based braking force allocation strategy for the subsystems was put forward. A road experiment under the actual running condition at Shanghai Dock was carried out to test the braking energy recovery efficiency of the system. Experimental result shows that the braking energy recovery efficiencies under full-loaded running condition and unloaded running condition are 14.534% and 55.617% respectively, and the average is 35.076%. The efficiencies of electric vehicles powered with lead-acid and lithium batteries are usually about 10%, so the ultracapacitor heavy-duty tractor has higher braking energy recovery efficiency.
-
Key words:
- automotive engineering /
- electric vehicle /
- heavy-duty tractor /
- ultracapacitor /
- regenerative brake /
- energy recovery
-
表 1 电动机参数
Table 1. Parameters of motor
型式 三相异步交流电动机 额定电压/V 400 额定功率/kW 100 峰值功率/kW 160 额定转速/(r·min-1) 824 最高转速/(r·min-1) 4 500 额定扭矩/(N·m) 1 565 最大扭矩/(N·m) 2 300 表 2 超级电容参数
Table 2. Parameters of ultracapacitor
单体容量/F 160 000 储能电压/V 350~586 储能输出能量/(kW·h) 12 最大充电电流/A 400 充电停止电流/A 80~160 最大放电电流/A 600 电容最高使用温度/℃ 55 表 3 逆变器参数
Table 3. Parameters of inverter
额定容量/(kV·A) 220 额定电压/V 340~650 额定输出电压/V 400 额定输出电流/A 320 工作频率/Hz 0~150 表 4 增程测试结果
Table 4. Tested result of range-extended ratio
T/min W3/(kW·h) W1/(kW·h) W2/(kW·h) r/% 29.3 10.498 2.524 7.974 31.65 表 5 回馈效率测试结果
Table 5. Tested result of recovery efficiency
制动模式 空载急刹车 空载中轻度刹车 满载急刹车 满载中轻度刹车 Ev/(kW·h) 0.181 583 0.179 311 0.498 565 0.505 607 W4/(kW·h) 0.047 060 0.152 983 0.055 743 0.090 435 R/% 25.916 85.317 11.181 17.887 平均回收效率/% 55.617 14.534 35.076 -
[1] CHAN C C. The state of the art of electric, hybrid, and fuel cell vehicles[J]. Proceedings of the IEEE, 2007, 95(4): 704-718. doi: 10.1109/JPROC.2007.892489 [2] KELLY K, EUDY L. Field operations program—overview of advanced technology transportation[R]. Golden: National Renewable Energy Laboratory, 2000. [3] 张欣, 刘溧, 于海生. 混合动力电动汽车制动系统回馈特性仿真[J]. 中国公路学报, 2006, 19(3): 111-116. doi: 10.3321/j.issn:1001-7372.2006.03.021ZHANG Xin, LIU Li, YU Hai-sheng. Simulation for regenerative characteristics of hybrid electric vehicle braking system[J]. China Journal of Highway and Transport, 2006, 19(3): 111-116. (in Chinese). doi: 10.3321/j.issn:1001-7372.2006.03.021 [4] 吴志伟, 张建龙, 吴红杰, 等. 低速电动汽车混合能源存储系统效率分析[J]. 上海交通大学学报, 2012, 46(8): 1304-1309. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201208021.htmWU Zhi-wei, ZHANG Jian-long, WU Hong-jie, et al. Efficiency analysis of hybrid energy storage system in light electric vehicles[J]. Journal of Shanghai Jiaotong University, 2012, 46(8): 1304-1309. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201208021.htm [5] 邓元望, 龚金科, 王耀南. 轻度混合控制策略下混合动力电动汽车能量优化与仿真[J]. 中国公路学报, 2008, 21(6): 114-120. doi: 10.3321/j.issn:1001-7372.2008.06.019DENG Yuan-wang, GONG Jin-ke, WANG Yao-nan. Energy optimization and simulation of HEV using mild hybrid control strategy[J]. China Journal of Highway and Transport, 2008, 21(6): 114-120. (in Chinese). doi: 10.3321/j.issn:1001-7372.2008.06.019 [6] LAM L T, LOUEY R. Development of ultra-battery for hybrid-electric vehicle applications[J]. Journal of Power Sources, 2006, 158(2): 1140-1148. doi: 10.1016/j.jpowsour.2006.03.022 [7] YOO H J, SUL S K, PARK Y, et al. System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries[J]. IEEE Transactions on Industry Applications, 2008, 44(1): 108-114. doi: 10.1109/TIA.2007.912749 [8] 蹇小平, 张卫钢. 电动汽车蓄电池参数集中/分布式检测法[J]. 长安大学学报: 自然科学版, 2007, 27(5): 103-106. doi: 10.3321/j.issn:1671-8879.2007.05.023JIAN Xiao-ping, ZHANG Wei-gang. Centralized/distributetd detecting method of battery parameters in electric vehicle[J]. Journal of Chang'an University: Natural Science Edition, 2007, 27(5): 103-106. (in Chinese). doi: 10.3321/j.issn:1671-8879.2007.05.023 [9] 张接信, 程博, 周雁麓, 等. 电动汽车新型动力电池建模分析[J]. 长安大学学报: 自然科学版, 2009, 29(5): 112-115. doi: 10.3969/j.issn.1671-8879.2009.05.023ZHANG Jie-xin, CHENG Bo, ZHOU Yan-lu, et al. New battery modeling analysis for electric vehicle[J]. Journal of Chang'an University: Natural Science Edition, 2009, 29(5): 112-115. (in Chinese). doi: 10.3969/j.issn.1671-8879.2009.05.023 [10] PHATIPHAT T, SETPHANE R, BERNARD D. Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications[J]. Journal of Power Sources, 2009, 193(1): 376-385. doi: 10.1016/j.jpowsour.2008.12.120 [11] 叶敏, 安强, 程博, 等. 电动汽车主辅电源能量回馈研究[J]. 系统仿真学报, 2007, 29(23): 5434-5437. doi: 10.3969/j.issn.1004-731X.2007.23.020YE Min, AN Qiang, CHENG Bo, et al. Simulation on energy recovery for main and auxiliary battery of electric vehicles[J]. Journal of System Simulation, 2007, 29(23): 5434-5437. (in Chinese). doi: 10.3969/j.issn.1004-731X.2007.23.020 [12] 王军, 熊冉, 杨振迁. 纯电动大客车制动能量回收系统控制策略研究[J]. 汽车工程, 2009, 31(10): 932-937. doi: 10.3321/j.issn:1000-680X.2009.10.008WANG Jun, XIONG Ran, YANG Zhen-qian. A study on the control strategy for brake energy regeneration system in pure electric buses[J]. Automotive Engineering, 2009, 31(10): 932-937. (in Chinese). doi: 10.3321/j.issn:1000-680X.2009.10.008 [13] 李玉芳, 林逸, 何洪文, 等. 电动汽车再生制动控制算法研究[J]. 汽车工程, 2007, 29(11): 1059-1062, 1073. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC200712008.htmLI Yu-fang, LIN Yi, HE Hong-wen, et al. A study on control algorithm of regenerative braking for EV/HEV[J]. Automotive Engineering, 2007, 29(11): 1059-1062, 1073. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC200712008.htm [14] 张毅, 杨林, 朱建新, 等. 电动汽车能量回馈的整车控制[J]. 汽车工程, 2005, 27(1): 24-27. doi: 10.3321/j.issn:1000-680X.2005.01.006ZHANG Yi, YANG Lin, ZHU Jian-xin, et al. The control strategy of energy regeneration for electric vehicle[J]. Automotive Engineering, 2005, 27(1): 24-27. (in Chinese). doi: 10.3321/j.issn:1000-680X.2005.01.006 [15] 徐梁飞, 华剑锋, 包磊, 等. 燃料电池混合动力客车等效氢耗优化策略[J]. 中国公路学报, 2009, 22(1): 104-108. doi: 10.3321/j.issn:1001-7372.2009.01.017XU Liang-fei, HUA Jian-feng, BAO Lei, et al. Optimizaed strategy on equivalent hydrongen consumption for fuel cell hybrid electric bus[J]. China Journal of Highway and Transport, 2009, 22(1): 104-108. (in Chinese). doi: 10.3321/j.issn:1001-7372.2009.01.017 [16] MORENO J, ORTUZAR M E, DIXON J W. Energy-management system for a hybrid electric vehicle using ultracapacitors and neural networks[J]. IEEE Transactions on Industrial Electronics, 2006, 53(2): 614-623. doi: 10.1109/TIE.2006.870880 [17] AHN J K, JUNG K H, KIM D H, et al. Analysis of a regenerative braking system for hybrid electric vehicles using an electro-mechanical brake[J]. International Journal of Automotive Technology, 2009, 10(2): 229-234. doi: 10.1007/s12239-009-0027-z [18] LE MOIGNE P, ROMBAUT C, MUNERET X, et al. Energy gauge for lead-acid batteries in electric vehicles[J]. IEEE Transactions on Energy Conversion, 2000, 15(3): 354-360. doi: 10.1109/60.875503