-
摘要: 基于Lyapunov理论提出车辆主动前轮转向与直接横摆力矩的集成控制方法, 在二自由度车辆模型的基础上设计了自适应控制器, 对轮胎刚度进行自适应估计以补偿轮胎侧向力的非线性, 基于MATLAB和CarSim软件搭建了车辆闭环仿真模型, 在路面上进行了正弦输入仿真试验。仿真结果表明: 附着系数为0.8、车速为100 km·h-1时, 前轴侧向力最大误差为210 N, 约占前轴实际侧向力的8.1%, 后轴侧向力最大误差为296 N, 约占后轴实际侧向力的8.5%;附着系数为0.3、车速为80 km·h-1时, 前轴侧向力最大误差为146 N, 约占前轴实际侧向力的8.5%, 后轴侧向力最大误差为142 N, 约占后轴实际侧向力的9.8%。车辆主动前轮转向与直接横摆力矩集成控制的效果优于主动前轮转向和直接横摆力矩单独控制的效果。Abstract: An integrated control method of active front steering and direct yaw moment for vehicle was proposed based on Lyapunov theory.An adaptive controller was designed based on the vehicle model with two degrees of freedom.The tire stiffness was adaptively estimated to compensate the nonlinear of tire lateral force.The closed-loop simulation model of vehicle was established based on MATLAB and CarSim software.The sinusoidal input simulation test was carried out on road.Simulation result shows that when adhesion coefficient is 0.8 and speed is 100 km·h-1, the maximum error of front axle lateral force is 210 Nand about 8.1% of front axle actual lateral force, and the maximum error of back axle lateral force is 296 Nand about 8.5% of back axle actual lateral force.When adhesion coefficient is 0.3 and speed is 80 km·h-1, the maximum error of front axle lateral force is 146 Nand about 8.5% of front axle actual lateral force, and the maximum error of back axle lateral force is 142 Nand about 9.8% of back axle actual lateral force.The integrated control effects of active front steering and direct yaw moment are better than the individually control effects of active front steering and direct yaw moment.
-
表 1 车轮制动控制策略
Table 1. Control strategy of wheel brake
表 2 模型基本参数
Table 2. Basic parameters of model
-
[1] ZHANG Wei, GUO Xue-xun. An ABS control strategy for commercial vehicle[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(1): 384-392. doi: 10.1109/TMECH.2014.2322629 [2] KOJO T, SUZUMURA M, TSUCHIYA Y, et al. Development of active front steering control system[C]//SAE. 2005 SAE World Congress. Warrendale: SAE, 2005: 1-7. [3] VAN ZANTEN A T. Bosch ESP systems: 5 years of experience[C]//SAE. SAE Automotive Dynamics and Stability Conference. Warrendale: SAE, 2000: 1-9. [4] RAJAONAH B, ANCEAUX F, VIENNE F. Trust and the use of adaptive cruise control: a study of a cut-in situation[J]. Cognition Technology and Work, 2006, 8(2): 146-155. doi: 10.1007/s10111-006-0030-3 [5] HIDAS P. Modelling vehicle interactions in microscopic simulation of merging and weaving[J]. Transportation Research Part C: Emerging Technologies, 2005, 13(1): 37-62. doi: 10.1016/j.trc.2004.12.003 [6] REINELT W, KLIER W, REIMANN G, et al. Active front steering(part 2): safety and functionality[C]//SAE. 2004 SAE World Congress. Warrendale: SAE, 2004: 1-7. [7] BASLAMISLI SC, KOSE I·E, ANLAS G. Gain-scheduled integrated active steering and differential control for vehicle handling improvement[J]. Vehicle System Dynamics, 2009, 47(1): 99-119. doi: 10.1080/00423110801927100 [8] HE Jun-jie, CROLLA D A, LEVESLEY M C, et al. Coordination of active steering, driveline, and braking for integrated vehicle dynamics control[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2006, 220(10): 1401-1421. doi: 10.1243/09544070JAUTO265 [9] YANG Xiu-jian, WANG Zeng-cai, PENG Wei-li. Coordinated control of AFS and DYC for vehicle handling and stability based on optimal guaranteed cost theory[J]. Vehicle System Dynamics, 2009, 47(1): 57-79. doi: 10.1080/00423110701882264 [10] SONG J. Design and evaluation of active front wheel steering system model and controller[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2014, 7(1): 367-374. doi: 10.4271/2014-01-2000 [11] CHANG S, LEE B, PARK Y, et al. Integrated chassis control for improving on-center handling behavior[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2014, 7(3): 1002-1008. doi: 10.4271/2014-01-0139 [12] HAC A, BODIE M O. Improvements in vehicle handling through integrated control of chassis systems[J]. International Journal of Vehicle Autonomous Systems, 2002, 1(1): 83-110. doi: 10.1504/IJVAS.2002.001807 [13] LI Dao-fei, DU Shang-qian, YU Fan. Integrated vehicle chassis control based on direct yaw moment, active steering and active stabilizer[J]. Vehicle System Dynamics, 2008, 46(S1): 341-351. [14] GOODARZI A, SABOOTEH A, ESMAILZADEH E. Automatic path control based on integrated steering and external yawmoment control[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2008, 222(2): 189-200. doi: 10.1243/14644193JMBD120 [15] 胡爱军, 王朝晖. 主动前轮转向与直接横摆力矩H2/H∞集成控制[J]. 河南科技大学学报: 自然科学版, 2010, 31(6): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX201006008.htmHU Ai-jun, WANG Zhao-hui. H2/H∞control for integrated active front steering and direct yaw moment[J]. Journal of Henan University of Science and Technology: Natural Science, 2010, 31(6): 24-28. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX201006008.htm [16] BOADA M J L, BOADA B L, MUNOZ A, et al. Integrated control of front-wheel steering and front braking forces on the basis of fuzzy logic[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2006, 220(3): 253-267. doi: 10.1243/09544070JAUTO124 [17] ALI R K M, TABATABAEI S H, KAZEMI R, et al. Integrated control of AFS and DYC in the vehicle yaw stability management system using fuzzy logic control[C]//SAE. 2008 World Congress. Warrendale: SAE, 2008: 1-11. [18] LI Gang, WEI Hong, LIANG He-qi. Four-wheel independently driven in-wheel motors electric vehicle AFS and DYC integrated control[C]//SAE. SAE 2012 World Congress and Exhibition. Warrendale: SAE, 2012: 1-7. [19] 李刚, 宗长富, 姜立勇, 等. 主动前轮转向与直接横摆力矩集成控制算法[J]. 吉林大学学报: 工学版, 2011, 41(增2): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY2011S2012.htmLI Gang, ZONG Chang-fu, JIANG Li-yong, et al. Active front steering and direct yaw moment integrated control algorithm[J]. Journal of Jilin University: Engineering and Technology Edition, 2011, 41(S2): 54-58. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY2011S2012.htm [20] REN Bing-tao, CHEN Hong, ZHAO Hai-yan, et al. Integrated control of in-wheel-motored electric vehicles using a model predictive control method[C]//IEEE. Proceeding of the 11th World Congress on Intelligent Control and Automation. New York: IEEE, 2014: 1676-1681. [21] MASHADI B, MAJIDI M. Integrated AFS/DYC sliding mode controller for a hybrid electric vehicle[J]. International Journal of Vehicle Design, 2011, 56(1-4): 246-269. [22] 张聪, 王振臣, 程菊, 等. 4WIS-4WID车辆横摆稳定性AFS+ARS+DYC滑模控制[J]. 汽车工程, 2014, 36(3): 304-309, 320. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201403010.htmZHANG Cong, WANG Zhen-chen, CHENG Ju, et al. Slide model control of AFS+ARS+DYC for the yaw stability of a 4WIS-4WID vehicle[J]. Automotive Engineering, 2014, 36(3): 304-309, 320. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201403010.htm [23] GUO Jian-hua, CHU Liang, LIU Hong-wei, et al. Integrated control of active front steering and electronic stability program[C]//IEEE. International Conference on Advanced Computer Control. New York: IEEE, 2010: 449-453. [24] HEO H, JOA E, YI K, et al. Integrated chassis control for enhancement of high speed cornering performance[J]. SAE International Journal of Commercial Vehicles, 2015, 8(1): 102-109. doi: 10.4271/2015-01-1568 [25] 孙桂华. 基于直接横摆力矩控制的电动汽车操纵稳定性研究[D]. 镇江: 江苏大学, 2013.SUN Gui-hua. Research on handling and stability of electric vehicle based on direct yaw-moment control[D]. Zhenjiang: Jiangsu University, 2013. (in Chinese). [26] 韩京清. 从PID技术到"自抗扰控制"技术[J]. 控制工程, 2002, 9(3): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF200203004.htmHAN Jing-qing. From PID technique to active disturbances rejection control technique[J]. Control Engineering of China, 2002, 9(3): 13-18. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF200203004.htm [27] 赵志良. 非线性自抗扰控制的收敛性[D]. 合肥: 中国科学技术大学, 2012.ZHAO Zhi-liang. Convergence of nonlinear active disturbance rejection control[D]. Hefei: University of Science and Technology of China, 2012. (in Chinese).