留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车辆主动前轮转向与直接横摆力矩自适应控制

桑楠 魏民祥

桑楠, 魏民祥. 车辆主动前轮转向与直接横摆力矩自适应控制[J]. 交通运输工程学报, 2016, 16(3): 91-99. doi: 10.19818/j.cnki.1671-1637.2016.03.011
引用本文: 桑楠, 魏民祥. 车辆主动前轮转向与直接横摆力矩自适应控制[J]. 交通运输工程学报, 2016, 16(3): 91-99. doi: 10.19818/j.cnki.1671-1637.2016.03.011
SANG Nan, WEI Min-xiang. Adaptive control of active front steering and direct yaw moment for vehicle[J]. Journal of Traffic and Transportation Engineering, 2016, 16(3): 91-99. doi: 10.19818/j.cnki.1671-1637.2016.03.011
Citation: SANG Nan, WEI Min-xiang. Adaptive control of active front steering and direct yaw moment for vehicle[J]. Journal of Traffic and Transportation Engineering, 2016, 16(3): 91-99. doi: 10.19818/j.cnki.1671-1637.2016.03.011

车辆主动前轮转向与直接横摆力矩自适应控制

doi: 10.19818/j.cnki.1671-1637.2016.03.011
基金项目: 

国家自然科学基金项目 51375007

详细信息
    作者简介:

    桑楠(1969-), 男, 重庆开县人, 常州工学院副教授, 南京航空航天大学工学博士研究生, 从事汽车主动安全技术研究

    魏民祥(1963-), 男, 山东青州人, 南京航空航天大学教授, 工学博士

  • 中图分类号: U461.6

Adaptive control of active front steering and direct yaw moment for vehicle

More Information
    Author Bio:

    SANG Nan(1969-), male, associate professor, doctoralstudent, +86-25-84892201, sc_sangn@sina.com

    WEI Min-xiang(1963-), male, professor, PhD, +86-25-84892201, weimx@nuaa.edu.cn

  • 摘要: 基于Lyapunov理论提出车辆主动前轮转向与直接横摆力矩的集成控制方法, 在二自由度车辆模型的基础上设计了自适应控制器, 对轮胎刚度进行自适应估计以补偿轮胎侧向力的非线性, 基于MATLAB和CarSim软件搭建了车辆闭环仿真模型, 在路面上进行了正弦输入仿真试验。仿真结果表明: 附着系数为0.8、车速为100 km·h-1时, 前轴侧向力最大误差为210 N, 约占前轴实际侧向力的8.1%, 后轴侧向力最大误差为296 N, 约占后轴实际侧向力的8.5%;附着系数为0.3、车速为80 km·h-1时, 前轴侧向力最大误差为146 N, 约占前轴实际侧向力的8.5%, 后轴侧向力最大误差为142 N, 约占后轴实际侧向力的9.8%。车辆主动前轮转向与直接横摆力矩集成控制的效果优于主动前轮转向和直接横摆力矩单独控制的效果。

     

  • 图  1  单轨车辆模型

    Figure  1.  Single track vehicle model

    图  2  主动前轮转向系统

    Figure  2.  Active front steering system

    图  3  自适应控制系统结构

    Figure  3.  Structure of adaptive control system

    图  4  高附着系数下正弦输入横摆角速度响应

    Figure  4.  Yaw rate response with sinusoidal input and high adhesion coefficient

    图  5  高附着系数下正弦输入质心侧偏角响应

    Figure  5.  Barycenter side-slip angle response with sinusoidal input and high adhesion coefficient

    图  6  高附着系数下车辆和车轮速度变化

    Figure  6.  Speed variation of vehicle and wheels with high adhesion coefficient

    图  7  高附着系数下轮胎实际侧向力与估计侧向力

    Figure  7.  Tire actual lateral forces and estimated lateral forces with high adhesion coefficient

    图  8  高附着系数下正弦试验主动控制输入

    Figure  8.  Active control input of sinusoidal test with high adhesion coefficient

    图  9  低附着系数下正弦输入横摆角速度响应

    Figure  9.  Yaw rate response with sinusoidal input and low adhesion coefficient

    图  10  低附着系数下正弦输入质心侧偏角响应

    Figure  10.  Barycenter side-slip angle response with sinusoidal input and low adhesion coefficient

    图  11  低附着系数下轮胎实际侧向力与估计侧向力

    Figure  11.  Tire actual lateral forces and estimated lateral forces with low adhesion coefficient

    图  12  低附着系数下正弦试验主动控制输入

    Figure  12.  Active control input of sinusoidal test with low adhesion coefficient

    图  13  轮胎侧偏估计刚度

    Figure  13.  Estimated tire cornering stiffness

    表  1  车轮制动控制策略

    Table  1.   Control strategy of wheel brake

    下载: 导出CSV

    表  2  模型基本参数

    Table  2.   Basic parameters of model

    下载: 导出CSV
  • [1] ZHANG Wei, GUO Xue-xun. An ABS control strategy for commercial vehicle[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(1): 384-392. doi: 10.1109/TMECH.2014.2322629
    [2] KOJO T, SUZUMURA M, TSUCHIYA Y, et al. Development of active front steering control system[C]//SAE. 2005 SAE World Congress. Warrendale: SAE, 2005: 1-7.
    [3] VAN ZANTEN A T. Bosch ESP systems: 5 years of experience[C]//SAE. SAE Automotive Dynamics and Stability Conference. Warrendale: SAE, 2000: 1-9.
    [4] RAJAONAH B, ANCEAUX F, VIENNE F. Trust and the use of adaptive cruise control: a study of a cut-in situation[J]. Cognition Technology and Work, 2006, 8(2): 146-155. doi: 10.1007/s10111-006-0030-3
    [5] HIDAS P. Modelling vehicle interactions in microscopic simulation of merging and weaving[J]. Transportation Research Part C: Emerging Technologies, 2005, 13(1): 37-62. doi: 10.1016/j.trc.2004.12.003
    [6] REINELT W, KLIER W, REIMANN G, et al. Active front steering(part 2): safety and functionality[C]//SAE. 2004 SAE World Congress. Warrendale: SAE, 2004: 1-7.
    [7] BASLAMISLI SC, KOSE I·E, ANLAS G. Gain-scheduled integrated active steering and differential control for vehicle handling improvement[J]. Vehicle System Dynamics, 2009, 47(1): 99-119. doi: 10.1080/00423110801927100
    [8] HE Jun-jie, CROLLA D A, LEVESLEY M C, et al. Coordination of active steering, driveline, and braking for integrated vehicle dynamics control[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2006, 220(10): 1401-1421. doi: 10.1243/09544070JAUTO265
    [9] YANG Xiu-jian, WANG Zeng-cai, PENG Wei-li. Coordinated control of AFS and DYC for vehicle handling and stability based on optimal guaranteed cost theory[J]. Vehicle System Dynamics, 2009, 47(1): 57-79. doi: 10.1080/00423110701882264
    [10] SONG J. Design and evaluation of active front wheel steering system model and controller[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2014, 7(1): 367-374. doi: 10.4271/2014-01-2000
    [11] CHANG S, LEE B, PARK Y, et al. Integrated chassis control for improving on-center handling behavior[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2014, 7(3): 1002-1008. doi: 10.4271/2014-01-0139
    [12] HAC A, BODIE M O. Improvements in vehicle handling through integrated control of chassis systems[J]. International Journal of Vehicle Autonomous Systems, 2002, 1(1): 83-110. doi: 10.1504/IJVAS.2002.001807
    [13] LI Dao-fei, DU Shang-qian, YU Fan. Integrated vehicle chassis control based on direct yaw moment, active steering and active stabilizer[J]. Vehicle System Dynamics, 2008, 46(S1): 341-351.
    [14] GOODARZI A, SABOOTEH A, ESMAILZADEH E. Automatic path control based on integrated steering and external yawmoment control[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2008, 222(2): 189-200. doi: 10.1243/14644193JMBD120
    [15] 胡爱军, 王朝晖. 主动前轮转向与直接横摆力矩H2/H集成控制[J]. 河南科技大学学报: 自然科学版, 2010, 31(6): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX201006008.htm

    HU Ai-jun, WANG Zhao-hui. H2/Hcontrol for integrated active front steering and direct yaw moment[J]. Journal of Henan University of Science and Technology: Natural Science, 2010, 31(6): 24-28. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX201006008.htm
    [16] BOADA M J L, BOADA B L, MUNOZ A, et al. Integrated control of front-wheel steering and front braking forces on the basis of fuzzy logic[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2006, 220(3): 253-267. doi: 10.1243/09544070JAUTO124
    [17] ALI R K M, TABATABAEI S H, KAZEMI R, et al. Integrated control of AFS and DYC in the vehicle yaw stability management system using fuzzy logic control[C]//SAE. 2008 World Congress. Warrendale: SAE, 2008: 1-11.
    [18] LI Gang, WEI Hong, LIANG He-qi. Four-wheel independently driven in-wheel motors electric vehicle AFS and DYC integrated control[C]//SAE. SAE 2012 World Congress and Exhibition. Warrendale: SAE, 2012: 1-7.
    [19] 李刚, 宗长富, 姜立勇, 等. 主动前轮转向与直接横摆力矩集成控制算法[J]. 吉林大学学报: 工学版, 2011, 41(增2): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY2011S2012.htm

    LI Gang, ZONG Chang-fu, JIANG Li-yong, et al. Active front steering and direct yaw moment integrated control algorithm[J]. Journal of Jilin University: Engineering and Technology Edition, 2011, 41(S2): 54-58. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY2011S2012.htm
    [20] REN Bing-tao, CHEN Hong, ZHAO Hai-yan, et al. Integrated control of in-wheel-motored electric vehicles using a model predictive control method[C]//IEEE. Proceeding of the 11th World Congress on Intelligent Control and Automation. New York: IEEE, 2014: 1676-1681.
    [21] MASHADI B, MAJIDI M. Integrated AFS/DYC sliding mode controller for a hybrid electric vehicle[J]. International Journal of Vehicle Design, 2011, 56(1-4): 246-269.
    [22] 张聪, 王振臣, 程菊, 等. 4WIS-4WID车辆横摆稳定性AFS+ARS+DYC滑模控制[J]. 汽车工程, 2014, 36(3): 304-309, 320. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201403010.htm

    ZHANG Cong, WANG Zhen-chen, CHENG Ju, et al. Slide model control of AFS+ARS+DYC for the yaw stability of a 4WIS-4WID vehicle[J]. Automotive Engineering, 2014, 36(3): 304-309, 320. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201403010.htm
    [23] GUO Jian-hua, CHU Liang, LIU Hong-wei, et al. Integrated control of active front steering and electronic stability program[C]//IEEE. International Conference on Advanced Computer Control. New York: IEEE, 2010: 449-453.
    [24] HEO H, JOA E, YI K, et al. Integrated chassis control for enhancement of high speed cornering performance[J]. SAE International Journal of Commercial Vehicles, 2015, 8(1): 102-109. doi: 10.4271/2015-01-1568
    [25] 孙桂华. 基于直接横摆力矩控制的电动汽车操纵稳定性研究[D]. 镇江: 江苏大学, 2013.

    SUN Gui-hua. Research on handling and stability of electric vehicle based on direct yaw-moment control[D]. Zhenjiang: Jiangsu University, 2013. (in Chinese).
    [26] 韩京清. 从PID技术到"自抗扰控制"技术[J]. 控制工程, 2002, 9(3): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF200203004.htm

    HAN Jing-qing. From PID technique to active disturbances rejection control technique[J]. Control Engineering of China, 2002, 9(3): 13-18. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF200203004.htm
    [27] 赵志良. 非线性自抗扰控制的收敛性[D]. 合肥: 中国科学技术大学, 2012.

    ZHAO Zhi-liang. Convergence of nonlinear active disturbance rejection control[D]. Hefei: University of Science and Technology of China, 2012. (in Chinese).
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  873
  • HTML全文浏览量:  253
  • PDF下载量:  618
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-01
  • 刊出日期:  2016-06-25

目录

    /

    返回文章
    返回