留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海上不规则波浪扰动对船舶运动的影响

钱小斌 尹勇 张秀凤 李业

钱小斌, 尹勇, 张秀凤, 李业. 海上不规则波浪扰动对船舶运动的影响[J]. 交通运输工程学报, 2016, 16(3): 116-124. doi: 10.19818/j.cnki.1671-1637.2016.03.014
引用本文: 钱小斌, 尹勇, 张秀凤, 李业. 海上不规则波浪扰动对船舶运动的影响[J]. 交通运输工程学报, 2016, 16(3): 116-124. doi: 10.19818/j.cnki.1671-1637.2016.03.014
QIAN Xiao-bin, YIN Yong, ZHANG Xiu-feng, LI Ye. Influence of irregular disturbance of sea wave on ship motion[J]. Journal of Traffic and Transportation Engineering, 2016, 16(3): 116-124. doi: 10.19818/j.cnki.1671-1637.2016.03.014
Citation: QIAN Xiao-bin, YIN Yong, ZHANG Xiu-feng, LI Ye. Influence of irregular disturbance of sea wave on ship motion[J]. Journal of Traffic and Transportation Engineering, 2016, 16(3): 116-124. doi: 10.19818/j.cnki.1671-1637.2016.03.014

海上不规则波浪扰动对船舶运动的影响

doi: 10.19818/j.cnki.1671-1637.2016.03.014
基金项目: 

863计划项目 2015AA016404

中央高校基本科研业务费专项资金项目 313204330

国家海洋公益性行业科研项目 201505017-4

详细信息
    作者简介:

    钱小斌(1989-), 男, 浙江绍兴人, 大连海事大学工学博士研究生, 从事航海仿真与虚拟现实技术研究

    尹勇(1969-), 男, 湖北郧县人, 大连海事大学教授, 工学博士

  • 中图分类号: U666.158

Influence of irregular disturbance of sea wave on ship motion

More Information
  • 摘要: 针对动力定位船舶高精度六自由度运动数学模型的需求, 研究了不规则海浪扰动的建模方法及其对船舶运动的影响, 对比了长峰波与短峰波的波面形状及其产生的波浪力和力矩; 基于傅汝德-克雷诺夫假设, 将船舶近似为箱型船, 建立了长峰和短峰不规则波对动力定位船舶产生的扰动时域模型; 基于微幅波假设和线性叠加原理, 采用中国沿海的频率谱和国际拖曳水池会议推荐的扩散函数, 建立了长峰和短峰不规则波的三维波面模型, 并对一艘动力定位船舶进行了主浪向角为90°、135°和180°的仿真验证。仿真结果表明: 长峰波和短峰波所产生的一阶波浪力均呈高频振动变化; 当主浪向角为90°时, 长峰波产生的一阶波浪纵向力、纵摇力矩、横摇力矩接近于0;当主浪向角为180°时, 长峰波产生的一阶波浪横向力、艏摇力矩、横摇力矩接近于0;长峰波产生的二阶波浪力和力矩比短峰波大19.2%;短峰波较长峰波在形状上更具有不规则性和不对称性, 短峰不规则波可对船舶在波浪中的运动产生较大影响。

     

  • 图  1  船舶状态

    Figure  1.  Ship state

    图  2  不同波能谱的比较

    Figure  2.  Comparison of different wave energy spectra

    图  3  扩散函数

    Figure  3.  Spreading function

    图  4  遭遇角的定义

    Figure  4.  Definition of encountered angle

    图  5  浪向角为90°时的三维海面

    Figure  5.  Three-dimensional sea surfaces when wave direction angle is 90°

    图  6  浪向角为135°时的三维海面

    Figure  6.  Three-dimensional sea surfaces when wave direction angle is 135°

    图  7  浪向角为180°时的三维海面

    Figure  7.  Three-dimensional sea surfaces when wave direction angle is 180°

    图  8  浪向角为90°时的一阶波浪力和力矩

    Figure  8.  First-order wave forces and moments when wave direction angle is 90°

    图  9  浪向角为135°时的一阶波浪力和力矩

    Figure  9.  First-order wave forces and moments when wave direction angle is 135°

    图  10  浪向角为180°时的一阶波浪力和力矩

    Figure  10.  First-order wave forces and moments when wave direction angle is 180°

    表  1  二阶波浪力和力矩的比较

    Table  1.   Comparison of second-order wave forces and moments

    下载: 导出CSV
  • [1] SØRENSENA J. A survey of dynamic positioning control systems[J]. Annual Reviews in Control, 2011, 35(1): 123-136. doi: 10.1016/j.arcontrol.2011.03.008
    [2] MYRHAUG D, HOLMEDAL L E. Bottom friction and erosion beneath long-crested and short-crested nonlinear random waves[J]. Ocean Engineering, 2011, 38(17/18): 2015-2022.
    [3] SHI Xiao-cheng, SUN Xing-yan, FU Ming-yu, et al. An unscented Kalman filter based wave filtering algorithm for dynamic ship positioning[C]//IEEE. Proceedings of the 5th International Conference on Automation and Logistics. New York: IEEE, 2011: 399-404.
    [4] FOSSEN T I, TRISTAN P. Kalman filtering for positioning and heading control of ships and offshore rigs: estimating the effects of waves, wind, and current[J]. IEEE Control Systems Magazine, 2009, 29(6): 32-46. doi: 10.1109/MCS.2009.934408
    [5] 陈丽宁, 金一丞, 任鸿翔, 等. 使用波数谱绘制海浪波幅畸变的校正[J]. 计算机辅助设计与图形学学报, 2015, 27(9): 1617-1624. doi: 10.3969/j.issn.1003-9775.2015.09.004

    CHEN Li-ning, JIN Yi-cheng, REN Hong-xiang, et al. Correcting the amplitude malformation of ocean wave rendering with wave number spectrum[J]. Journal of Computer-aided Design and Computer Graphics, 2015, 27(9): 1617-1624. (in Chinese). doi: 10.3969/j.issn.1003-9775.2015.09.004
    [6] DARLES E, CRESPIN B, GHAZANFARPOUR D, et al. A survey of ocean simulation and rendering techniques in computer graphics[J]. Computer Graphics Forum, 2010, 30(1): 43-60.
    [7] WEERASINGHE M, SANDARUWAN D, KEPPITIYAGAMA C, et al. A novel approach to simulate wind-driven ocean waves in the deep ocean[C]//IEEE. 2013 International Conference on Advances in ICT for Emerging Regions. New York: IEEE, 2013: 28-37.
    [8] FAN Nai-mei, ZHANG Na. Simulation method of random ocean waves based on fractal interpolation[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2013, 6(6): 411-420. doi: 10.14257/ijsip.2013.6.6.37
    [9] PRACHUMRAK K, KANCHANAPORNCHAI T. Realtime interactive ocean wave simulation using multithread[J]. International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, 2011, 5(8): 1117-1120.
    [10] IGLESIAS A. Computer graphics for water modeling and rendering: a survey[J]. Future Generation Computer Systems, 2004, 20(8): 1355-1374. doi: 10.1016/j.future.2004.05.026
    [11] FANG M C, LUO J H, LEE M L. A nonlinear mathematical model for ship turning circle simulation in wave[J]. Journal of Ship Research, 2005, 49(2): 69-79. doi: 10.5957/jsr.2005.49.2.69
    [12] SEO M G, KIM Y. Numerical analysis on ship maneuvering coupled with ship motion in waves[J]. Ocean Engineering, 2011, 38(17/18): 1934-1945.
    [13] SUBRAMANIAN R, BECK R F. A time-domain strip theory approach to maneuvering in a seaway[J]. Ocean Engineering, 2015, 104: 107-118. doi: 10.1016/j.oceaneng.2015.04.071
    [14] 张秀凤, 尹勇, 金一丞. 规则波中船舶运动六自由度数学模型[J]. 交通运输工程学报, 2007, 7(3): 40-43. doi: 10.3321/j.issn:1671-1637.2007.03.009

    ZHANG Xiu-feng, YIN Yong, JIN Yi-cheng. Ship motion mathematical model with six degrees of freedom in regular wave[J]. Journal of Traffic and Transportation Engineering, 2007, 7(3): 40-43. (in Chinese). doi: 10.3321/j.issn:1671-1637.2007.03.009
    [15] 张秀凤. 航海模拟器中六自由度船舶运动数学模型的研究[D]. 大连: 大连海事大学, 2009.

    ZHANG Xiu-feng. Study on the ship mathematical model with six degrees of freedom applied in marine simulator[D]. Dalian: Dalian Maritime University, 2009. (in Chinese).
    [16] WOOLLISCROFT M O, MAKI K J. A fast-running CFD formulation for unsteady ship maneuvering performance prediction[J]. Ocean Engineering, 2016, 117: 154-162. doi: 10.1016/j.oceaneng.2016.03.058
    [17] 李海波, 温宝贵. 用短峰波理论预报南海浮式生产储油装置运动响应[J]. 中国海上油气, 2007, 19(5): 346-349. doi: 10.3969/j.issn.1673-1506.2007.05.014

    LI Hai-bo, WEN Bao-gui. Predicting movement behavior of Nanhai FPSO by short-crested wave theory[J]. China Offshore Oil and Gas, 2007, 19(5): 346-349. (in Chinese). doi: 10.3969/j.issn.1673-1506.2007.05.014
    [18] 郑文涛, 匡晓峰, 缪泉明, 等. 船舶在长峰波和短峰波中运动响应的模型试验研究[C]//吴有生, 刘桦, 许唯临, 等. 第九届全国水动力学学术会议暨第二十二届全国水动力学研讨会文集. 北京: 海洋出版社, 2009: 359-364.

    ZHENG Wen-tao, KUANG Xiao-feng, MIAO Quan-ming, et al. Model test study of ship motions in long-crested and short-crested irregular waves[C]//WU You-sheng, LIU Hua, XU Wei-lin, et al. Proceedings of the 9th National Congress on Hydrodynamics and the 22nd National Conference on Hydrodynamics. Beijing: China Ocean Press, 2009: 359-364. (in Chinese).
    [19] 陈京普, 魏锦芳, 朱德祥. 船舶在长峰和短峰不规则波中运动的三维时域数值模拟[J]. 水动力学研究与进展A辑, 2011, 26(5): 589-596. doi: 10.3969/j.issn1000-4874.2011.05.010

    CHEN Jing-pu, WEI Jin-fang, ZHU De-xiang. Numerical simulations of ship motions in long-crested and short-crested irregular waves by a 3D time domain method[J]. Chinese Journal of Hydrodynamics, 2011, 26(5): 589-596. (in Chinese). doi: 10.3969/j.issn1000-4874.2011.05.010
    [20] 王艳霞, 陈京普, 魏锦芳. 长峰不规则波与短峰不规则波对船舶失速影响的分析[J]. 中国造船, 2012, 53(增1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC2012S1004.htm

    WANG Yan-xia, CHEN Jing-pu, WEI Jin-fang. Analysis of decrease of ship speed in long-crested and short-crested irregular waves[J]. Shipbuilding of China, 2012, 53(S1): 13-18. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC2012S1004.htm
    [21] FOSSEN T I, FJELLSTAD O E. Nonlinear modelling of marine vehicles in 6 degrees of freedom[J]. Journal of Mathematical Modelling of Systems, 1995, 1(1): 17-27. doi: 10.1080/13873959508837004
    [22] LEE C, JUNG J S, HALLER M C. Asymmetry in directional spreading function of sea waves due to refraction[C]//ASME. Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering. New York: ASME, 2009: 1-9.
    [23] 陈丽宁, 金一丞, 任鸿翔, 等. 不规则海浪实时绘制中波浪谱的比较与选择[J]. 山东大学学报: 工学版, 2013, 43(6): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201306009.htm

    CHEN Li-ning, JIN Yi-cheng, REN Hong-xiang, et al. On comparison and selection of the wave spectrum in real-time rendering of the irregular ocean wave[J]. Journal of Shandong University: Engineering Science, 2013, 43(6): 47-52. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201306009.htm
    [24] 张龙杰, 谢晓方, 孙涛, 等. 舰艇摇摆对小口径舰炮射击精度的影响分析[J]. 火炮发射与控制学报, 2013(1): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HPFS201301004.htm

    ZHANG Long-jie, XIE Xiao-fang, SUN Tao, et al. Analysis about influence of warship rocking on firing accuracy of small caliber naval gun[J]. Journal of Gun Launch and Control, 2013(1): 11-16. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HPFS201301004.htm
    [25] 莫建. 波浪中船舶六自由度操纵运动数值仿真[D]. 哈尔滨: 哈尔滨工程大学, 2009.

    MO Jian. Numerical simulation of ship manoeuvring motion with six degrees of freedom in waves[D]. Harbin: Harbin Engineering University, 2009. (in Chinese).
    [26] SANDARUWAN D, KODIKARA N, ROSA R, et al. Modeling and simulation of environmental disturbances for six degrees of freedom ocean surface vehicle[J]. Sri Lankan Journal of Physics, 2009, 10: 39-57.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1252
  • HTML全文浏览量:  137
  • PDF下载量:  1381
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-21
  • 刊出日期:  2016-06-25

目录

    /

    返回文章
    返回