Instability characterization coefficient of key block and evaluation of rock slope stability
-
摘要: 建立了一种关键块体判别方法, 实现了岩坡整体稳定性的准定量化评价; 综合考虑关键块体的几何特性和受力特征, 定义了关键块体失稳表征系数; 利用团队自主研发的GeoSMA-3D平台, 开发出基于失稳表征系数的关键块体搜索模块, 可视化了包括块体搜索、可移动块体判断、关键块体确定、块体失稳和滑落的关键块体失稳全过程; 引入层次分析法, 利用关键块体失稳表征系数计算出各关键块体的权重, 应用关键块体的安全系数及其计算权重, 联合确定了岩坡稳定性表征安全系数, 应用关键块体信息定量表征了岩坡的整体稳定性; 提出了一种考虑岩体结构面和关键块体的岩坡稳定性评价方法; 以辽宁省建昌岩坡工程为例, 应用该方法进行了关键块体的确定和可视化再现, 判断了岩坡的整体稳定性, 并与数值流形元法(NMM) 的模拟结果和现场实测结果进行了对比分析, 以验证应用关键块体表征岩坡稳定性评价方法的可行性和适用性。研究结果表明: 控制该岩坡稳定性的关键块体有6个, 基于所提出方法计算的岩坡稳定性表征安全系数为0.566 9 (不稳定岩坡), 与现场监测数据所得结果的相对误差为7.066%;在NMM模拟结果中, 采用安全系数法确定的最不利关键块体的滑落没有引起岩坡失稳, 而基于所提出方法确定的最不利关键块体的滑落导致了岩坡的整体失稳, 因此, 同时考虑关键块体体积和安全系数2个因素的岩坡稳定性评价方法更合理, 基于层次分析法, 应用关键块体信息表征的岩坡稳定性与工程实际吻合。Abstract: A key block determination method was established to realize the quasi-quantitative evaluation of rock slope stability. The concept of instability characterization coefficient of key block was defined by comprehensively considering the geometric characteristics and mechanical properties of key blocks. The program GeoSMA-3 Ddeveloped by the authors'team was used to develop the search module for key blocks based on the instability characterization coefficient. The entire instability process of key blocks, including the search for blocks, judgment of moveable blocks, determination of key blocks, slide and instability of blocks was visualized. Using the instability characterization coefficient of key blocks, the weight of each key block was calculated through the introduction of the analytic hierarchy process. The characterization safety factor ofrock slope stability was determined through the combination of the safety factors and weights of key blocks. Key block information was used to characterize rock slope stability, and a method for evaluating the rock slope stability was proposed by considering rock structural planes and key blocks. Taking the Jianchang Rock Slope in Liaoning Province as an example, the determination and visualization of key blocks were carried out by using the proposed method to examine the rock slope stability. The results were compared with those of the numerical manifold method (NMM) and the on-site monitoring data to verify the applicability and feasibility of the proposed method. Research result shows that there are six controlling key blocks for the rock slope stability. The characterization safety factor of rock slope stability calculated through the proposed method is0.566 9 (an unstable rock slope). The relative difference between the calculated results and those from on-site monitoring is 7.066%. In the simulation results from NNM, the slippage of the most unfavorable key block determined by the safety factor method does not cause the instability of the rock slope, while the most unfavorable key block determined by the proposed method contributes to the overall instability of the rock slope. Therefore, the evaluation of rock slope stability by simultaneously considering the volumes and safety factors of key blocks is more reasonable. The rock slope stability characterized by key block information agrees well with the engineering practice.
-
Key words:
- geotechnical engineering /
- rock slope /
- stability evaluation /
- key block /
- GeoSMA-3D /
- analytic hierarchy process
-
表 1 标度体系
Table 1. Scale system
表 2 岩坡节理产状
Table 2. Joint formation of rock slope
表 3 关键块体的数据
Table 3. Data of key blocks
表 4 关键块体失稳表征系数
Table 4. Instability characterization coefficients of key blocks
表 5 Mi计算结果
Table 5. Calculation result of Mi
表 6 Wi计算结果
Table 6. Calculation result of Wi
表 7 ωi计算结果
Table 7. Calculation result of ωi
表 8 gi计算结果
Table 8. Calculation result of gi
表 9 平均随机一致性指标
Table 9. Average random consistency index
-
[1] SHI Gen-hua. A geometric method for stability analysis of discontinuous rocks[J]. Science in China: Series A, 1982, 25 (3): 318-336. [2] SHI G H, GOOGMAN R E. The key blocks of unrolled joint traces in developed maps of tunnel walls[J]. International Journal for Numerical Analytical Methods in Geomechanics, 1989, 13 (2): 131-158. doi: 10.1002/nag.1610130203 [3] ZHANG Qi-hua, DING Xiu-li, WU Ai-qing. A comparison of the application of block theory and 3D block-cutting analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 99: 39-49. doi: 10.1016/j.ijrmms.2017.09.005 [4] 陈孝湘, 夏才初, 缪圆冰. 基于关键块体理论的隧道分部施工时空效应[J]. 长安大学学报: 自然科学版, 2011, 31 (2): 57-62. doi: 10.3969/j.issn.1671-8879.2011.02.013CHEN Xiao-xiang, XIA Cai-chu, MIAO Yuan-bing. Timespace effect in fractional steps construction tunnels by key block theory[J]. Journal of Chang'an University: Natural Science Edition, 2011, 31 (2): 57-62. (in Chinese). doi: 10.3969/j.issn.1671-8879.2011.02.013 [5] 张发明, 余成, 胡梦蛟, 等. 大跨度地下洞室群围岩多尺度块体稳定性预测方法[J]. 地球科学与环境学报, 2015, 37 (2): 93-101. doi: 10.3969/j.issn.1672-6561.2015.02.011ZHANG Fa-ming, YU Cheng, HU Meng-jiao, et al. Multiscale block stability prediction methods of large span underground cavern group surrounding rock[J]. Journal of Earth Sciences and Environment, 2015, 37 (2): 93-101. (in Chinese). doi: 10.3969/j.issn.1672-6561.2015.02.011 [6] 张奇华, 邬爱清. 基于凹形区分类的块体几何形态分析方法[J]. 岩土工程学报, 2005, 27 (3): 299-303. doi: 10.3321/j.issn:1000-4548.2005.03.011ZHANG Qi-hua, WU Ai-qing. Morphological analysis method of block based on classification of concave zone[J]. Chinese Journal of Geotechnical Engineering, 2005, 27 (3): 299-303. (in Chinese). doi: 10.3321/j.issn:1000-4548.2005.03.011 [7] 张奇华. 多滑面块体的分块极限平衡分析法[J]. 岩石力学与工程学报, 2007, 26 (8): 1625-1632. doi: 10.3321/j.issn:1000-6915.2007.08.013ZHANG Qi-hua. Block-dividing limit equilibrium analysis method with multiple sliding-planes[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (8): 1625-1632. (in Chinese). doi: 10.3321/j.issn:1000-6915.2007.08.013 [8] 郝杰, 侍克斌, 陈功民, 等. 有限长迹线块体理论及其在围岩块体滑落概率分析中的应用[J]. 岩石力学与工程学报, 2014, 33 (7): 1471-1478. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407020.htmHAO Jie, SHI Ke-bin, CHEN Gong-min, et al. Block theory of limited trace lengths and its application to probability analysis of block sliding of surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (7): 1471-1478. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407020.htm [9] PRIEST S D, HUDSON J A. Estimation of discontinuity spacing and trace length using scanline surveys[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1981, 18 (3): 183-197. doi: 10.1016/0148-9062(81)90973-6 [10] 郑银河, 夏露, 于青春. 考虑岩桥破坏的块体稳定性分析方法[J]. 岩土力学, 2013, 34 (增1): 197-203. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S1031.htmZHENG Yin-he, XIA Lu, YU Qing-chun. Stability analysis method of block considering cracking of rock bridge[J]. Rock and Soil Mechanics, 2013, 34 (S1): 197-203. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S1031.htm [11] 郭牡丹, 朱浮声, 王述红, 等. 含共面结构面岩体的岩桥贯通准则研究[J]. 岩土力学, 2013, 34 (6): 1598-1604. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306014.htmGUO Mu-dan, ZHU Fu-sheng, WANG Shu-hong, et al. Research on rock bridge coalescence law of rock mass containing coplanar structural planes[J]. Rock and Soil Mechanics, 2013, 34 (6): 1598-1604. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306014.htm [12] LIN D, FAIRHURST C, STARFIELD A M. Geometrical identification of three-dimensional rock block systems using topological techniques[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1987, 24 (6): 331-338. doi: 10.1016/0148-9062(87)92254-6 [13] 张奇华, 邬爱清. 随机结构面切割下的全空间块体拓扑搜索一般方法[J]. 岩石力学与工程学报, 2007, 26 (10): 2043-2048. doi: 10.3321/j.issn:1000-6915.2007.10.012ZHANG Qi-hua, WU Ai-qing. General methodology of spatial block topological identification with stochastic discontinuities cutting[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (10): 2043-2048. (in Chinese). doi: 10.3321/j.issn:1000-6915.2007.10.012 [14] 于青春, 陈德基, 薛果夫, 等. 裂隙岩体一般块体理论初步[J]. 水文地质工程地质, 2005 (6): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200506010.htmYU Qing-chun, CHEN De-ji, XUE Guo-fu, et al. Preliminary study on general block theory of fractured rock mass[J]. Hydrogeology and Engineering Geology, 2005 (6): 42-48. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200506010.htm [15] WU W, ZHU H H, LIN J S, et al. Tunnel stability assessment by 3D DDA-key block analysis[J]. Tunnelling and Underground Space Technology, 2018, 71: 210-214. doi: 10.1016/j.tust.2017.07.015 [16] ZHENG Yin-he, XIA Lu, YU Qing-chun. A method for identifying three-dimensional rock blocks formed by curved fractures[J]. Computers and Geotechnics, 2015, 65: 1-11. doi: 10.1016/j.compgeo.2014.11.005 [17] ZHANG Yu-ting, XIAO Ming, CHEN Jun-tao. A new methodology for block identification and its application in a large scale underground cavern complex[J]. Tunnelling and Underground Space Technology, 2010, 25 (2): 168-180. doi: 10.1016/j.tust.2009.10.005 [18] KEMENY J, POST R. Estimating three-dimensional rock discontinuity orientation from digital images of fracture traces[J]. Computers and Geosciences, 2003, 29 (1): 65-77. doi: 10.1016/S0098-3004(02)00106-1 [19] 郝建斌, 郭进扬, 张振北, 等. 地震作用下锚杆支护边坡动力响应[J]. 交通运输工程学报, 2017, 17 (3): 46-55. http://transport.chd.edu.cn/article/id/201703005HAO Jian-bin, GUO Jin-yang, ZHANG Zhen-bei, et al. Dynamicresponse of anchors-supported slope under earthquake[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (3): 46-55. (in Chinese). http://transport.chd.edu.cn/article/id/201703005 [20] LIU Tie-xin, DENG Jian-hui, ZHENG Jun, et al. A new semi-deterministic block theory method with digital photogrammetry for stability analysis of a high rock slope in China[J]. Engineering Geology, 2017, 216: 76-89. doi: 10.1016/j.enggeo.2016.11.012 [21] 周志军, 牛涌, 张铁柱. 基于改进Sarma法的岩质边坡稳定性分析[J]. 交通运输工程学报, 2013, 13 (1): 15-19. http://transport.chd.edu.cn/article/id/201301003ZHOU Zhi-jun, NIU Yong, ZHANG Tie-zhu. Stability analysis of rock slope based on improved Sarma method[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (1): 15-19. (in Chinese). http://transport.chd.edu.cn/article/id/201301003 [22] 蒋中明, 曾铃, 付宏渊, 等. 极端久雨条件下软岩边坡动态稳定性分析[J]. 中国公路学报, 2014, 27 (2): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201402004.htmJIANG Zhong-ming, ZENG Ling, FU Hong-yuan, et al. Dynamic stability analysis of soft rock slope due to extremely prolonged rainfall[J]. China Journal of Highway and Transport, 2014, 27 (2): 27-34. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201402004.htm [23] 张海娜, 陈从新, 郑允, 等. 地震作用下的层状岩质边坡块状-弯曲倾倒解析分析[J]. 中国公路学报, 2018, 31 (2): 75-86. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201802009.htmZHANG Hai-na, CHEN Cong-xin, ZHENG Yun, et al. Analytical study on block-flexure toppling failure of rock slopes subjected to seismic loads[J]. China Journal of Highway and Transport, 2018, 31 (2): 75-86. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201802009.htm [24] 张标, 王晅, 张家生, 等. 地震效应下二级边坡三维动态稳定性上限分析[J]. 中国公路学报, 2018, 31 (2): 86-96.ZHANG Biao, WANG Xuan, ZHANG Jia-sheng, et al. Three-dimensional seismic stability limit analysis of two-stage slope by kinematical approach[J]. China Journal of Highway and Transport, 2018, 31 (2): 86-96. (in Chinese). [25] JIANG Qing-hui, LIU Xian-hua, WEI Wei, et al. A new method for analyzing the stability of rock wedges[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 413-422. [26] JIANG Qing-hui, ZHOU Chuang-bing. A rigorous solution for the stability of polyhedral rock blocks[J]. Computers and Geotechnics, 2017, 90: 190-201. [27] SHI Gen-hua. Producing joint polygons, cutting joint blocks and finding key blocks for general free surfaces[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25 (11): 2161-2170. [28] 谢晔, 刘军, 李仲奎, 等. 在大型地下开挖中围岩块体稳定性分析[J]. 岩石力学与工程学报, 2006, 25 (2): 306-311. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200602014.htmXIE Ye, LIU Jun, LI Zhong-kui, et al. Stability analysis of block in surrounding rock mass of large underground excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25 (2): 306-311. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200602014.htm [29] WANG Shu-hong, NI Peng-peng, GUO Mu-dan. Spatial characterization of joint planes and stability analysis of tunnel blocks[J]. Tunnelling and Underground Space Technology, 2013, 38 (1): 357-367. [30] WANG Shu-hong, HUANG Run-qiu, NI Peng-peng, et al. Fracture behavior of intact rock using acoustic emission: experimental observation and realistic modeling[J]. Geotechnical Testing Journal, 2013, 36 (6): 903-914. [31] 张敏思, 黄润秋, 王述红, 等. 基于网格划分的全空间块体识别方法及其工程应用[J]. 岩土工程学报, 2016, 38 (3): 477-485. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603014.htmZHANG Min-si, HUANG Run-qiu, WANG Shu-hong, et al. Spatial block identification method based on meshing and its engineering application[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (3): 477-485. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603014.htm [32] WANG Shu-hong, NI Peng-peng. Application of block theory modeling on spatial block topological identification to rock slope stability analysis[J]. International Journal of Computational Methods, 2014, 11 (1): 1-24. [33] 黄建文, 李建林, 周宜红. 基于AHP的模糊评判法在边坡稳定性评价中应用[J]. 岩石力学与工程学报, 2007, 26 (增1): 2627-2632. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1005.htmHUANG Jian-wen, LI Jian-lin, ZHOU Yi-hong. Application of fuzzy analysis based on AHP to slope stability evaluation[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (S1): 2627-2632. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1005.htm [34] NEFESLIOGLU H A, SEZER E A, GOKCEOGLU C, et al. A modified analytical hierarchy process (M-AHP) approach for decision support systems in natural hazard assessments[J]. Computers and Geosciences, 2013, 59: 1-8. [35] LI Xin, LIU Yue, WANG Yao-jun, et al. Evaluating transit operator efficiency: an enhanced DEA model with constrained fuzzy-AHP cones[J]. Journal of Traffic and Transportation Engineering: English Edition, 2016, 3 (3): 215-225. [36] XIA Chun-yan, LIU Yan-jie, LIU Dong-mei. Method of weight assignment for multi-criterion based on grey interval AHP[J]. Advanced Materials Research, 2011, 243-249: 5285-5288.