留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沥青混合料分子模拟技术综述

汪海年 丁鹤洋 冯珀楠 邵林龙 屈鑫 尤占平

汪海年, 丁鹤洋, 冯珀楠, 邵林龙, 屈鑫, 尤占平. 沥青混合料分子模拟技术综述[J]. 交通运输工程学报, 2020, 20(2): 1-14. doi: 10.19818/j.cnki.1671-1637.2020.02.001
引用本文: 汪海年, 丁鹤洋, 冯珀楠, 邵林龙, 屈鑫, 尤占平. 沥青混合料分子模拟技术综述[J]. 交通运输工程学报, 2020, 20(2): 1-14. doi: 10.19818/j.cnki.1671-1637.2020.02.001
WANG Hai-nian, DING He-yang, FENG Po-nan, SHAO Lin-long, QU Xin, YOU Zhan-ping. Advances on molecular simulation technique in asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 1-14. doi: 10.19818/j.cnki.1671-1637.2020.02.001
Citation: WANG Hai-nian, DING He-yang, FENG Po-nan, SHAO Lin-long, QU Xin, YOU Zhan-ping. Advances on molecular simulation technique in asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 1-14. doi: 10.19818/j.cnki.1671-1637.2020.02.001

沥青混合料分子模拟技术综述

doi: 10.19818/j.cnki.1671-1637.2020.02.001
基金项目: 

国家自然科学基金项目 51878063

详细信息
    作者简介:

    汪海年(1977-), 男, 江苏涟水人, 长安大学教授, 工学博士, 从事沥青路面材料研究

  • 中图分类号: U414

Advances on molecular simulation technique in asphalt mixture

Funds: 

National Natural Science Foundation of China 51878063

More Information
  • 摘要: 分析了沥青混合料分子模拟技术的基本原理、主要实现手段和模拟流程, 研究了沥青分子模型构建的2类主要方法, 总结了不同时期的沥青质结构模型与不同应用场合中的集料模型, 探讨了沥青扩散现象、外加剂对沥青性能的影响机理、沥青与再生剂的融合、沥青-集料的界面作用模拟影响因素以及水、沥青老化等因素对沥青-集料黏附性的影响等问题, 展望了沥青路面材料分子模拟技术的未来研究方向。研究结果表明: 分子模拟技术可以从微观角度探究道路工程材料的性能变化与内在机理, 为材料的精确设计和定量分析奠定基础; 分子组装法是目前沥青分子模型构建的重要思路, 能够有效表征沥青材料的物化和力学特性; 集料模型的构建思路主要是根据集料的化学成分来选择构建相关晶胞, 进而代表集料的宏观特性; 分子模拟技术动态展现了沥青的扩散过程, 体现了内部各组分的扩散速率; 利用分子模拟技术可以分析沥青自愈行为的过程, 并提出不同指标来表征了各个阶段的愈合速率; 借助分子模拟技术, 可以从微观角度解释和分析沥青内部组分和外加剂对沥青性能影响; 在沥青-再生剂融合研究中, 分子模拟技术可表征再生剂扩散深度、掺入时机与再生机理等问题; 在沥青-集料界面作用研究中, 分子模拟技术可表征材料的化学组成、加载模式、模型参数与界面接触等因素的影响; 水、温度与沥青的老化等因素将会对沥青-集料界面作用产生重要影响, 通过构建含水模型可将微观模拟与宏观试验联系起来。

     

  • 图  1  分子动力学模拟流程

    Figure  1.  Molecular dynamics simulation procedures

    图  2  分子模拟方法应用

    Figure  2.  Application of molecular simulation methods

    图  3  沥青质分子模型

    Figure  3.  Molecular models of asphaltenes

    图  4  优化前后的沥青质模型对比

    Figure  4.  Comparison of original and modified asphaltene models

    图  5  集料模型

    Figure  5.  Aggregates models

    图  6  再生剂扩散系数比较

    Figure  6.  Comparison of rejuvenator diffusion coefficients

    图  7  沥青质指数与最大黏附强度的关系

    Figure  7.  Relationship between asphaltene index and maximum adhesive stress

    图  8  沥青质指数与分离功的关系

    Figure  8.  Relationship between asphaltene index and separation work

    图  9  模型参数对黏附强度的影响

    Figure  9.  Influence of model parameters on adhesive stress

    图  10  含水率与温度对最大黏附强度的影响

    Figure  10.  Influence of moisture and temperature on maximum adhesive stress

    表  1  分子动力学法主要模块的适用性

    Table  1.   Applicability of main modules in molecular dynamics

    模块 基本原理或属性 适用范畴
    Visualizer 采用图形界面, 从多维度显示材料和分子结构信息的模块。 主要用于构建和展示沥青、集料与外加剂等分子的虚拟模型, 并可根据研究的需要, 修改晶体结构的参数。
    Amorphous Cell 采用蒙特卡罗方法搭建材料模型的模块。 主要应用于构建沥青、集料与各种改性剂的分子结构模型, 在探究新旧沥青融会扩散等问题中, 发挥了重要作用。
    Discover 采用多种成熟的分子力学和分子动力学方法, 准确计算最低能量分子构型、分子体系的结构与动力学轨迹的模块。 被广泛运用于研究沥青材料的玻璃化转变温度、杨氏模量与剪切模量等热力学、物理学特性, 也常被应用于计算改性剂在沥青中扩散速率。
    Mesocite 采用耗散动力学方法, 从介观层面来模拟复杂体系的动力学特性。 主要应用于研究高分子稀释溶解、油/水界面特性、表面活性剂作用与表面吸附等场景下。
    Forcite 采用分子力学方法快速计算体系能量, 并对于分子及周期性体系进行几何优化, 得到最小能量构型的模块。 主要用于对新建的大分子复杂虚拟模型, 如沥青质、改性剂分子等, 进行快速能量计算, 并在保持合理结构的同时进行结构优化, 保证体系能量最小, 并运行各类力场下的动力学计算。
    下载: 导出CSV

    表  2  沥青分子模型构建情况

    Table  2.   Summary of asphalt molecular models

    表  3  再生剂在老化沥青中扩散速率

    Table  3.   Rejuvenator diffusion rates in aged asphalt

    再生剂 短期老化沥青扩散速率/(m2·s-1) 长期老化沥青扩散速率/(m2·s-1)
    正四十烷C14H30 5.590×10-11 4.401×10-11
    环状烃C15H28 7.519×10-11 3.810×10-11
    环烷芳香族化合物C15H22 8.911×10-11 6.800×10-11
    极性芳香族化合物C11H13NO2 3.560×10-11 2.885×10-11
    下载: 导出CSV

    表  4  酰胺基团对沥青质堆叠距离的影响

    Table  4.   Influence of amide groups on stacking distance of asphaltenes

  • [1] AIGNER E, LACKNER R, PICHLER C. Multiscale prediction of viscoelastic properties of asphalt concrete[J]. Journal of Materials in Civil Engineering, 2009, 21(12): 771-780. doi: 10.1061/(ASCE)0899-1561(2009)21:12(771)
    [2] 孙敏, 郑木莲, 毕玉峰, 等. 聚氨酯改性沥青改性机理和性能[J]. 交通运输工程学报, 2019, 19(2): 49-58. doi: 10.3969/j.issn.1671-1637.2019.02.005

    SUN Min, ZHENG Mu-lian, BI Yu-feng, et al. Modification mechanism and performance of polyurethane modified asphalt[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 49-58. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.02.005
    [3] 王明, 刘黎萍. 纳观尺度沥青相态力学特性老化行为[J]. 交通运输工程学报, 2019, 19(6): 1-13. doi: 10.3969/j.issn.1671-1637.2019.06.002

    WANG Ming, LIU Li-ping. Aging behaviors of nanoscale mechanical properties of asphalt phases[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 1-13. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.06.002
    [4] SU Man-man, SI Chun-di, ZHANG Zeng-ping, et al. Molecular dynamics study on influence of Nano-ZnO/SBS on physical properties and molecular structure of asphalt binder[J]. Fuel, 2020, 263, DOI: 10.1016/j.fuel,2019.116777.
    [5] YAO Hui, DAI Qing-li, YOU Zhan-ping. Investigation of the asphalt-aggregate interaction using molecular dynamics[J]. Petroleum Science and Technology, 2017, 35(6): 586-593. doi: 10.1080/10916466.2016.1270303
    [6] HU Dong-liang, PEI Jian-zhong, LI Rui, et al. Using thermodynamic parameters to study self-healing and interface properties of crumb rubber modified asphalt based on molecular dynamics simulation[J]. Frontiers of Structural and Civil Engineering, 2019, 14(6), DOI: 10.1007/s11709-019-0579-6.
    [7] XU Gang-ji, WANG Hao. Diffusion and interaction mechanism of rejuvenating agent with virgin and recycled asphalt binder: amolecular dynamics study[J]. Molecular Simulation, 2018, 44(17): 1433-1443. doi: 10.1080/08927022.2018.1515483
    [8] HUANG Man, ZHANG Hong-liang, GAO Yang, et al. Study of diffusion characteristics of asphalt-aggregate interface with molecular dynamics simulation[J]. International Journal of Pavement Engineering, 2019, DOI: 10.1080/10298436.2019.1608991.
    [9] LU Yang, WANG Lin-bing. Atomistic modelling of moisture sensitivity: a damage mechanisms study of asphalt concrete interfaces[J]. Road Materials and Pavement Design, 2017, 18(S3): 200-214.
    [10] YAO Hui, DAI Qing-li, YOU Zhan-ping. Chemo-physical analysis and molecular dynamics (MD) simulation of moisture susceptibility of nano hydrated lime modified asphalt mixtures[J]. Construction and Building Materials, 2015, 101: 536-547. doi: 10.1016/j.conbuildmat.2015.10.087
    [11] 文玉华, 朱如曾, 周富信, 等. 分子动力学模拟的主要技术[J]. 力学进展, 2003, 33(1): 65-73. doi: 10.3321/j.issn:1000-0992.2003.01.008

    WEN Yu-hua, ZHU Ru-zeng, ZHOU Fu-xin, et al. An overview on molecular dynamics simulation[J]. Advances in Mechanics, 2003, 33(1): 65-73. (in Chinese). doi: 10.3321/j.issn:1000-0992.2003.01.008
    [12] LU Yang, WANG Lin-bing. Nano-mechanics modelling of deformation and failure behaviours at asphalt-aggregate interfaces[J]. International Journal of Pavement Engineering, 2011, 12(4): 311-323. doi: 10.1080/10298436.2011.575136
    [13] SRIVASTAVA P, CHAPMAN W G, LAIBINIS P E. Molecular dynamics simulation of oxygen transport through n-alkanethiolate self-assembled monolayers on gold and copper[J]. The Journal of Physical Chemistry B, 2009, 113(2): 456-464. doi: 10.1021/jp807288e
    [14] LIOVELL Thermodynamic properties of Lennard-Jones chain molecules: renormalization-group corrections to a modified statistical associating fluid theory[J]. The Journal of Physical Chemistry, 2004, 121(21): 10715-10724.
    [15] JENNINGS P W, PRIBANIC J A S, DESANDO M A, et al. Binder characterization and evaluation by nuclear magnetic resonance spectroscopy[R]. Washington DC: National Research Council, 1993.
    [16] 丛玉凤, 廖克俭, 翟玉春. 分子模拟在SBS改性沥青中的应用[J]. 化工学报, 2005, 56(5): 769-773. doi: 10.3321/j.issn:0438-1157.2005.05.004

    CONG Yu-feng, LIAO Ke-jian, ZHAI Yu-chun. Application of molecular simulation for study of SBS modified asphalt[J]. Journal of Chemical Industry and Engineering(China), 2005, 56(5): 769-773. (in Chinese). doi: 10.3321/j.issn:0438-1157.2005.05.004
    [17] CONG Yu-feng, HUANG Wei, LIAO Ke-jian, et al. Study on composition and structure of Liaoshu asphalt[J]. Petroleum Science and Technology, 2007, 22(3/4): 455-462.
    [18] SUN Da-quan, SUN Guo-qiang, ZHU Xing-yi, et al. Intrinsic temperature sensitive self-healing character of asphalt binders based on molecular dynamics simulations[J]. Fuel, 2018, 211: 609-620. doi: 10.1016/j.fuel.2017.09.089
    [19] ROGEL E. Studies on asphaltene aggregation via computational chemistry[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 104(1): 85-93.
    [20] DICKIE J P, YEN T F. Macrostructures of the asphaltic fractions by various instrumental methods[J], Analytical Chemistry, 1967, 39(14): 1847-1852.
    [21] STORM D A, EDWARDS J C, DECANIO S J, et al. Molecular representations of Ratawi and Alaska north slope asphaltenes based on liquid- and solid-state NMR[J]. Energy and Fuels, 1994, 8(3): 561-566. doi: 10.1021/ef00045a007
    [22] ARTOK L, SU Yan, HIROSE Y, et al. Structure and reactivity of petroleum-derived asphaltene[J]. Energy and Fuels, 1999, 13(2): 287-296. doi: 10.1021/ef980216a
    [23] MURGICH J, ABANERO J A, STRAUSZ O P. Molecular recognition in aggregates formed by asphaltene and resin molecules from the Athabasca oil sand[J]. Energy and Fuels, 1999, 13(2): 278-286. doi: 10.1021/ef980228w
    [24] MURGICH J, RODR Molecular recognition and molecular mechanics of micelles of some model asphaltenes and resins[J]. Energy and Fuels, 1996, 10(1): 68-76.
    [25] GROENZIN H, MULLINS O C. Molecular size and structure of asphaltenes from various sources[J]. Energy and Fuels, 2000, 14(3): 677-684. doi: 10.1021/ef990225z
    [26] TAKANOHASHI T, SATO S, SAITO I, et al. Molecular dynamics simulation of the heat-induced relaxation of asphaltene aggregates[J]. Energy and Fuels, 2003, 17(1): 135-139. doi: 10.1021/ef0201275
    [27] MULLINS O C. The modified Yen model[J]. Energy and Fuels, 2010, 24(4): 2179-2207. doi: 10.1021/ef900975e
    [28] LI D D, GREENFIELD M L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115: 347-356. doi: 10.1016/j.fuel.2013.07.012
    [29] LI D D, GREENFIELD M L. High internal energies of proposed asphaltene structures[J]. Energy and Fuels, 2011, 25(8): 3698-3705. doi: 10.1021/ef200507c
    [30] 张宗涛. 持续极端高温条件下的沥青路面抗永久变形研究[D]. 西安: 长安大学, 2018.

    ZHANG Zong-tao. Research on asphalt pavement resist permanent deformation under persistent and extreme high temperature conditions[D]. Xi'an: Chang'an University, 2018. (in Chinese).
    [31] 丁勇杰. 基于分子模拟技术的沥青化学结构特征研究[D]. 重庆: 重庆交通大学, 2013.

    DING Yong-jie. Study on chemical structure characteristic of asphalt using molecular simulation[D]. Chongqing: Chongqing Jiaotong University, 2013. (in Chinese).
    [32] 王鹏, 董泽蛟, 谭忆秋, 等. 基于分子模拟的沥青蜂状结构成因探究[J]. 中国公路学报, 2016, 29(3): 9-16. doi: 10.3969/j.issn.1001-7372.2016.03.002

    WANG Peng, DONG Ze-jiao, TAN Yi-qiu, et al. Research on the formation mechanism of bee-like structures in asphalt binders based on molecular simulations[J]. China Journal of Highway and Transport, 2016, 29(3): 9-16. (in Chinese). doi: 10.3969/j.issn.1001-7372.2016.03.002
    [33] GREENFIELD M L. Molecular modelling and simulation of asphaltenes and bituminous materials[J]. International Journal of Pavement Engineering, 2011, 12(4): 325-341. doi: 10.1080/10298436.2011.575141
    [34] COELHO R R, HOVELL I, DE MELLO MONTE M B, et al. Characterisation of aliphatic chains in vacuum residues (VRs) of asphaltenes and resins using molecular modelling and FTIR techniques[J]. Fuel Processing Technology, 2006, 87(4): 325-333. doi: 10.1016/j.fuproc.2005.10.010
    [35] AL-ZAID K, KHAN Z H, HAUSER A, et al. Composition of high boiling petroleum distillates of Kuwait crude oils[J]. Fuel, 1998, 77(5): 453-458.
    [36] 郭猛. 沥青与矿料界面作用机理及多尺度评价方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    GUO Meng. Study on mechanism and multiscale evaluation method of interfacial interaction between asphalt binder and mineral aggregate[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese).
    [37] 高飞. 新-旧沥青混合体系扩散机制及宏微观特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    GAO Fei. Diffusion mechanism and macro-micro characteristics of fresh-RAP binders[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese).
    [38] ZHANG Li-qun, GREENFIELD M L. Relaxation time, diffusion, and viscosity analysis of model asphalt systems using molecular simulation[J]. The Journal of Physical Chemistry, 2007, 127(19), DOI: 10.1063/1.2799189.
    [39] ZHANG Li-qun, GREENFIELD M L. Effects of polymer modification on properties and microstructure of model asphalt systems[J]. Energy and Fuels, 2008, 22(5): 3363-3375. doi: 10.1021/ef700699p
    [40] HANSEN J S, LEMARCHAND C A, NIELSEN E, et al. Four-component united-atom model of bitumen[J]. The Journal of Physical Chemistry, 2013, 138(9), DOI: 10.1063/1.4792045.
    [41] PAN Jie-lin, TAREFDER R A, HOSSAIN M I. Study of moisture impact on asphalt before and after oxidation using molecular dynamics simulations[J]. Transportation Research Record, 2016, 2574: 38-47. doi: 10.3141/2574-04
    [42] XU Guang-ji, WANG Hao. Molecular dynamics study of oxidative aging effect on asphalt binder properties[J]. Fuel, 2017, 188: 1-10. doi: 10.1016/j.fuel.2016.10.021
    [43] ZADSHIR M, OLDHAM D J, HOSSEINNEZHAD S, et al. Investigating bio-rejuvenation mechanisms in asphalt binder via laboratory experiments and molecular dynamics simulation[J]. Construction and Building Materials, 2018, 190: 392-402. doi: 10.1016/j.conbuildmat.2018.09.137
    [44] MARTIN-MARTINEZ F J, FINI E H, BUEHLER M J. Molecular asphaltene models based on Clar sextet theory[J]. Royal Society of Chemistry Advances, 2015, 5(1): 753-759.
    [45] DING Yong-jie, HUANG Bao-shan, SHU Xiang. Modeling shear viscosity of asphalt through nonequilibrium molecular dynamics simulation[J]. Transportation Research Record, 2018, DOI: 10.1177/0361198118793316.
    [46] FALLAH F, KHABAZ F, KIM Y R, et al. Molecular dynamics modeling and simulation of bituminous binder chemical aging due to variation of oxidation level and saturate-aromatic-resin-asphaltene fraction[J]. Fuel, 2019, 237: 71-80. doi: 10.1016/j.fuel.2018.09.110
    [47] KANG Yang, ZHOU Dun-hong, WU Qiang, et al. Molecular dynamics study on the glass forming process of asphalt[J]. Construction and Building Materials, 2019, 214: 430-440. doi: 10.1016/j.conbuildmat.2019.04.138
    [48] GUO Fu-cheng, ZHANG Jiu-peng, PEI Jian-zhong, et al. Study on the mechanical properties of rubber asphalt by molecular dynamics simulation[J]. Journal of Molecular Modeling, 2019, 25(12), DOI: 10.1007/s00894-019-4250-x.
    [49] LUO Dai-song, GUO Meng, TAN Yi-qiu. Molecular simulation of minerals-asphalt interfacial interaction[J]. Minerals, 2018, 8(5), DOI: 10.3390/min8050176.
    [50] XU Guang-ji, WANG Hao. Study of cohesion and adhesion properties of asphalt concrete with molecular dynamics simulation[J]. Computational Materials Science, 2016, 112: 161-169. doi: 10.1016/j.commatsci.2015.10.024
    [51] GUO Meng, TAN Yi-qiu, WANG Lin-bing, et al. Diffusion of asphaltene, resin, aromatic and saturate components of asphalt on mineral aggregates surface: molecular dynamics simulation[J]. Road Materials and Pavement Design, 2017, 18(S3): 149-158.
    [52] CHU L, LUO L, FWA T F. Effects of aggregate mineral surface anisotropy on asphalt-aggregate interfacial bonding using molecular dynamics (MD) simulation[J]. Construction and Building Materials, 2019, 225: 1-12. doi: 10.1016/j.conbuildmat.2019.07.178
    [53] 徐霈. 基于分子动力学的沥青与集料界面行为虚拟实验研究[D]. 西安: 长安大学, 2013.

    XU Pei. Modeling and analysis of molecular dynamics for characterizing asphalt-aggregate interaction[D]. Xi'an: Chang'an University, 2013. (in Chinese).
    [54] 孙凤艳, 黄璐, 汪林兵. 轮胎与沥青路面微观摩擦接触特性的分子动力学模拟[J]. 工程科学学报, 2016, 38(6): 847-852. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201606015.htm

    SUN Feng-yan, HUANG Lu, WANG Lin-bing. Molecular dynamics simulation of micro frictional contact characteristics between tires and asphalt pavement[J]. Chinese Journal of Engineering, 2016, 38(6): 847-852. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201606015.htm
    [55] 陈俊, 殷小晶, 张倩倩, 等. 沥青内金属离子的水污特征及组分扩散的分子动力学模拟[J]. 东南大学学报(自然科学版), 2017, 47(4): 799-805. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201704026.htm

    CHEN Jun, YIN Xiao-jing, ZHANG Qian-qian, et al. Water quality degradation due to metal in asphalt and molecular dynamics simulation on SARA fraction diffusion[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(4): 799-805. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201704026.htm
    [56] DING Yong-jie, HUANG Bao-shan, SHU Xiang, et al. Use of molecular dynamics to investigate diffusion between virgin and aged asphalt binders[J]. Fuel, 2016, 174: 267-273. doi: 10.1016/j.fuel.2016.02.022
    [57] ZHAO Z, WU S, ZHOU X, et al. Molecular simulations of properties changes on nano-layered double hydroxides-modified bitumen[J]. Materials Research Innovations, 2015, 19(S8): 556-560.
    [58] 陈龙, 何兆益, 陈宏斌, 等. 新-旧沥青界面再生流变特征及分子动力学模拟研究[J]. 中国公路学报, 2019, 32(3): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201903004.htm

    CHEN Long, HE Zhao-yi, CHEN Hong-bin, et al. Rheological characteristics and molecular dynamics simulation of interface regeneration between virgin and aged asphalts[J]. China Journal of Highway and Transport, 2019, 32(3): 25-33. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201903004.htm
    [59] BHASIN A, BOMMAVARAM R, GREENFIELD M L, et al. Use of molecular dynamics to investigate self-healing mechanisms in asphalt binders[J]. Journal of Materials in Civil Engineering, 2011, 23(4): 485-492. doi: 10.1061/(ASCE)MT.1943-5533.0000200
    [60] SUN Da-quan, SUN Guo-qiang, ZHU Xing-yi, et al. Identification of wetting and molecular diffusion stages during self-healing process of asphalt binder via fluorescence microscope[J]. Construction and Building Materials, 2017, 132: 230-239. doi: 10.1016/j.conbuildmat.2016.11.137
    [61] TAN Yi-qiu, SHAN Li-yan, KIM Y R, et al. Healing characteristics of asphalt binder[J]. Construction and Building Materials, 2012, 27(1): 570-577. doi: 10.1016/j.conbuildmat.2011.07.006
    [62] SUN Da-quan, LIN Tian-ban, ZHU Xing-yi, et al. Indices for self-healing performance assessments based on molecular dynamics simulation of asphalt binders[J]. Computational Materials Science, 2016, 114: 86-93. doi: 10.1016/j.commatsci.2015.12.017
    [63] QU Xin, WANG Da-wei, HOU Yue, et al. Influence of paraffin on the microproperties of asphalt binder using MD simulation[J]. Journal of Materials in Civil Engineering, 2018, 30(8): 04018191-1-9. doi: 10.1061/(ASCE)MT.1943-5533.0002368
    [64] YAO Hui, DAI Qing-Li, YOU Zhan-ping, et al. Modulus simulation of asphalt binder models using molecular dynamics (MD) method[J]. Construction and Building Materials, 2018, 162: 430-441. doi: 10.1016/j.conbuildmat.2017.09.106
    [65] ZHOU X, WU S, LIU Q, et al. Effect of surface active agents on the rheological properties and solubility of layered double hydroxides-modified asphalt[J]. Materials Research Innovations, 2015, 19(S5): 978-982.
    [66] 许勐. 基于分子动力学模拟的沥青再生剂扩散机理分析[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    XU Meng. Analysis of the diffusion of rejuvenator into asphalt based on the molecular dynamice simulation[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese).
    [67] XU Guang-ji, WANG Hao, SUN Wei. Molecular dynamics study of rejuvenator effect on RAP binder: diffusion behavior and molecular structure[J]. Construction and Building Materials, 2018, 158: 1046-1054. doi: 10.1016/j.conbuildmat.2017.09.192
    [68] XU Meng, YI Jun-yan, FENG De-cheng, et al. Diffusion characteristics of asphalt rejuvenators based on molecular dynamics simulation[J]. International Journal of Pavement Engineering, 2019, 20(5): 615-627. doi: 10.1080/10298436.2017.1321412
    [69] SUN Wei, WANG Hao. Molecular dynamics simulation of diffusion coefficients between different types of rejuvenator and aged asphalt binder[J]. International Journal of Pavement Engineering, 2019, DOI: 10.1080/10298436.2019.1650927.
    [70] PAHLAVAN F, SAMIEADEL A, DENG Shu-guang, et al. Exploiting synergistic effects of intermolecular interactions to synthesize hybrid rejuvenators to revitalize aged asphalt[J]. ACS Sustainable Chemistry and Engineering, 2019, 7(18): 15514-15525. doi: 10.1021/acssuschemeng.9b03263
    [71] HORGNIES M, DARQUE-CERETTI E, FEZAI H, et al. Influence of the interfacial composition on the adhesion between aggregates and bitumen: investigations by EDX, XPS and peel tests[J]. International Journal of Adhesion and Adhesives, 2011, 31(4): 238-247. doi: 10.1016/j.ijadhadh.2011.01.005
    [72] XU Guang-ji, WANG Hao. Molecular dynamics study of interfacial mechanical behavior between asphalt binder and mineral aggregate[J]. Construction and Building Materials, 2016, 121: 246-254. doi: 10.1016/j.conbuildmat.2016.05.167
    [73] LU Yang, WANG Lin-bing. Nanoscale modelling of mechanical properties of asphalt-aggregate interface under tensile loading[J]. International Journal of Pavement Engineering, 2010, 11(5): 393-401. doi: 10.1080/10298436.2010.488733
    [74] WANG Hao, LIN En-qiang, XU Guang-ji. Molecular dynamics simulation of asphalt-aggregate interface adhesion strength with moisture effect[J]. International Journal of Pavement Engineering, 2017, 18(5): 414-423. doi: 10.1080/10298436.2015.1095297
    [75] XU Meng, YI Jun-yan, FENG De-cheng, et al. Analysis of adhesive characteristics of asphalt based on atomic force microscopy and molecular dynamics simulation[J]. ACS Applied Materials and Interfaces, 2016, 8(19): 12393-12403. doi: 10.1021/acsami.6b01598
    [76] 张静, 马士宾, 魏连雨, 等. 基于微观力学模型的沥青混合料水损坏研究[J]. 中外公路, 2015, 35(6): 254-259. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201506058.htm

    ZHANG Jing, MA Shi-bin, WEI Lian-yu, et al. Coupled micromechanical model of moisture-induced damage in asphalt mixtures[J]. Journal of China and Foreign Highway, 2015, 35(6): 254-259. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201506058.htm
    [77] JENA N K, LYNE A L, MURUGAN N A, et al. Atomic level simulations of the interaction of asphaltene with quartz surfaces: role of chemical modifications and aqueous environment[J]. Materials and Structures, 2017, 50(1): 99-1-9. doi: 10.1617/s11527-016-0880-y
    [78] 周新星. 砂粒式沥青混合料的动态力学及界面粘附性能研究[D]. 武汉: 武汉理工大学, 2016.

    ZHOU Xin-xing. Dynamic mechanical and interfacial adhesive properties of granular[D]. Wuhan: Wuhan University of Technology, 2016. (in Chinese).
    [79] MOHD HASAN M R, CHEW J W, JAMSHIDI A, et al. Review of sustainability, pretreatment, and engineering considerations of asphalt modifiers from the industrial solid wastes[J]. Journal of Traffic and Transportation Engineering (English Edition), 2019, 6(3): 209-244. doi: 10.1016/j.jtte.2018.08.001
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  2077
  • HTML全文浏览量:  410
  • PDF下载量:  682
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-20
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回