-
摘要: 为促进非常规交叉口设计在中国的创新应用, 选取U型回转、菱形互通式立交、借用出口车道左转、串联交叉口、连续流交叉口和平行流交叉口, 系统梳理了各种类型非常规交叉口的几何布局、信号相位相序方案和控制策略, 从理论研究和交通安全效益层面回顾了近10年来非常规交叉口的研究成果, 探讨了各种类型非常规交叉口在中国应用的可行性。分析结果表明: 非常规交叉口信号配时建模和求解没有困难, 且大多文献采用精确求解算法; 非常规交叉口效益评估结果根据文献研究对象和问题的不同存在差异, 但总体来看, U型回转不宜设在左转比例过高的交叉口, 菱形互通式立交适合于高速公路和快速路, 借用出口车道左转在左转比例较高的交叉口表现较好, 串联交叉口在过饱和状态下的效益最优, 连续流交叉口和平行流交叉口在对称需求下的效益更佳; 在交通安全方面, 设置U型回转和菱形互通式立交可以降低事故发生的可能性, 但其他几种类型非常规交叉口由于数据量较少或缺乏数据, 还没有得到统一的结论; 因非常规交叉口运行规则与驾驶人的认知存在差异, 在开放初期驾驶人会存在困惑, 采用驾驶人培训、前车提示和交警现场引导等措施是有效的, 自动驾驶技术与非常规交叉口设计相结合更有望加快非常规交叉口的应用和推广; 整体来看, U型回转、借用出口车道左转和串联交叉口在中国的应用前景良好, 菱形互通式立交在中国的适用性还需结合国内交通现况进一步探讨, 连续流交叉口和平行流交叉口由于运行规则复杂, 需先试点运行再逐步推广。Abstract: To promote the innovative application of unconventional arterial intersection design(UAID) in China, the U-turn, diverging diamond interchange, contraflow left-turn lane, tandem intersection, continuous flow intersection and parallel flow intersection were selected, the geometric layouts, signal phase sequence schemes and control strategies of various types of UAIDs were systematically sorted out. The research results of UAIDs in the recent decade were reviewed from the perspectives of theoretical research and traffic safety benefit. The application feasibilities of various types of UAIDs in China were discussed. Analysis result indicates that there are no difficulties in modelling and solving the signal timing of UAIDs, and most of the literatures adopt accurate algorithms. The benefit evaluation results of UAIDs are different according to the research objects and problems, but on the whole, the U-turn should not be set at the intersection with a high left turn proportion, the diverging diamond interchange is suitable for the freeway and expressway, the contraflow left-turn lane performs better at the intersection with a higher left turn proportion, the tandem intersection has the optimal benefit in the oversaturated state, and the continuous flow intersection and parallel flow intersection have better benefits under the symmetrical demand. In the aspect of traffic safety, setting up the U-turn and diverging diamond interchange can reduce the possibility of accident, but there is no unified conclusion for other types of UAIDs due to the lack of data or no data. Due to the difference between the operation rule of UAID and the driver's cognition, drivers will be confused in the early stage of opening up. It is effective to adopt measures such as the driver training, front vehicle prompt and traffic police on-site guidance. The combination of automatic driving technology and UAID is more hopeful to accelerate the application and promotion of UAID. On the whole, the U-turn, contraflow left-turn lane and tandem intersection have good application prospects in China, the applicability of diverging diamond interchange in China needs to be further discussed in combination with the domestic traffic situation. Due to the complex operation rules of continuous flow intersection and parallel flow intersection, it is necessary to carry on pilot operation first and then gradually popularize.
-
表 1 非常规交叉口设计文献统计
Table 1. Literature statistics of UAIDs
类型 首次提出时间 研究文献 文献数量/篇 涉及机动车的文献数量/篇 涉及非机动车的文献数量/篇 涉及行人的文献数量/篇 涉及运行安全的文献数量/篇 UT 未知[11] [12]~[31] 20 15 0 0 5 DDI 2003[32] [33]~[59] 27 18 0 2 7 CLL 2013[60] [60]~[76] 17 15 0 0 2 TI 2011[78] [78]~[98] 21 19 1 0 1 CFI 1987[99] [100]~[125] 26 16 2 4 4 PFI 2007[126] [126]~[130] 5 4 0 1 0 组合优化、对比分析 [131]~[139] 9 9 0 0 0 表 2 主交叉口与次级交叉口间距文献梳理
Table 2. Literature review of distance between main intersection and secondary intersection
类型 地点 推荐或使用长度/m UT 美国的10个交叉口和22个交通走廊设置MUT[6], 51个交叉口设置RCUT[7] 170~230[7]、180[11]、137[12]、200[14]、150[16]、305[17]、230[19]、120[22]、200[26]、145[28]、150[30] DDI 美国、加拿大、丹麦等国家共202个交叉口设置DDI 180~230[9]、150[33]、150[34]、183[42]、127~309[59] CLL 邯郸、济南等12个城市的50多个交叉口设置CLL[75] 50[61]、50[63]、50[65]、40~60[66]、70[67]、30~70[68]、50[69]、56[71]、60[76] TI 上海、厦门[87]、深圳[95]等城市交叉口设置TI 60[83]、66[86]、140[88]、50[91]、65[96]、50~80[98] CFI 深圳[118]、美国的17个交叉口设置CFI[10] 90~150[10]、100[100]、60~150[104]、60~150[107]、100[108]、100~115[112]、106[114]、80~160[119]、50~150[123]、100[124]、100[133] PFI 91.5[127]、≥80[129]、100[133]、150[135] 表 3 信号配时方法
Table 3. Signal timing methods
文献 类型 研究层次 约束条件 目标条件 建模方法 求解算法 车道容量 车道功能划分 容量 延误 停车次数 其他 [29] UT 点 √ √ 混合整数非线性规划 分支定界法 [42] DDI 点 √ √ √ 混合整数线性规划 [64] CLL 点 √ √ 二元混合整数线性规划 分支定界法 [67] CLL 点 √ √ √ 混合整数非线性规划 分支定界法 [71] CLL 点 √ √ √ 非线性规划 遗传算法 [69] CLL 点 √ √ √ 双目标优化 粒子群算法 [83] TI 点 √ √ √ 双目标优化 [85] TI 点 √ √ √ 混合整数非线性规划 可行方向法 [94] TI 点 √ √ √ 混合整数非线性规划 Lingo软件 [96] TI 点 √ √ √ √ √ 鲁棒优化模型 改进的NSGA-Ⅱ算法 [110] CFI 线 √ √ √ 多目标混合整数规划 词典方法 [112] CFI 点 √ √ √ √ 混合整数非线性规划 分支定界法 [113] CFI 点 √ √ √ √ 二元混合整数线性规划 枚举法 [114] CFI 点 √ √ √ √ 混合整数线性规划 [118] CFI 点 √ √ √ 线性规划 [123] CFI 点 √ √ √ 混合整数非线性规划 分支定界法 [128] PFI 点 √ √ √ √ 混合整数线性规划 [129] PFI 点 √ √ 线性规划 MATLAB软件 [135] PFI/CFI 点 √ √ √ √ 混合整数非线性规划 分支定界法 表 4 非常规交叉口运行特征
Table 4. Operation characteristics of UAIDs
类型 相位数 左转遇信号次数 直行遇信号次数 UT 2 2 1 DDI 2 2 2 CLL 4 2 1 TI 4 2 2 CFI 2 3 2 PFI 2 3 2 表 5 延误和容量评估文献
Table 5. Literatures on delay and capacity assessment
文献 类型 评估方法 延误下降/% 容量提升/% [25] UT 仿真 2.1~40.1 5.1~11.2 [28] UT 数值试验 33 46 [64] CLL 仿真 5.1~49.8 5~30 [70] CLL 仿真 35 25 [71] CLL 数值试验 21.3~23.8 [69] CLL 仿真 15.29 [85] TI 数值试验 50~80 [87] TI 数值试验 31.9 [90] TI 数值试验 99.51 [101] CFI 实地调查 64 [104] CFI 仿真 60.8、80.3 [108] CFI 仿真 42~86 [112] CFI 数值试验 56 65 [113] CFI 数值试验 89 [123] CFI 数值试验 60.4~83.0 [132] CFI 仿真 60~85 [134] CFI 仿真 99 [129] PFI 数值试验 70 60.0~114.5 -
[1] 《中国公路学报》编辑部. 中国交通工程学术研究综述·2016[J]. 中国公路学报, 2016, 29(6): 1-161. doi: 10.3969/j.issn.1001-7372.2016.06.001Editorial Department of China Journal of Highway and Transport. Review on China's traffic engineering research progress: 2016[J]. China Journal of Highway and Transport, 2016, 29(6): 1-161. (in Chinese). doi: 10.3969/j.issn.1001-7372.2016.06.001 [2] EL ESAWEY M, SAYED T. Analysis of unconventional arterial intersection designs(UAIDs): state-of-the-art methodologies and future research directions[J]. Transportmetrica A: Transport Science, 2013, 9(10): 860-895. doi: 10.1080/18128602.2012.672344 [3] CHANG G L, LU Yang, YANG Xiang-feng. An integrated computer system for analysis, selection, and evaluation of unconventional intersections[R]. Baltimore: Maryland State Highway Administration, 2011. [4] HUGHES W, JAGANNATHAN R, SENGUPTA D, et al. Alternative intersections/interchanges: informational report(AIIR)[R]. Washington DC: U. S. Federal Highway Administration, 2010. [5] ZHONG Zi-jia, NEJAD M, LEE E E, et al. Unconventional arterial intersection designs under connected and automated vehicle environment: a survey[J]. Systems and Control, 2019, 8: 1-23. [6] HILDEBRAND T E. Unconventional intersection designs for improving through traffic along the arterial road[D]. Tallahassee: Florida State University, 2007. [7] REID J, SUTHERLAND L, RAY B, et al. Median U-turn intersection: informational guide[R]. Washington DC: U. S. Federal Highway Administration, 2014. [8] HUMMER J, RAY B, DALEIDEN A, et al. Restricted crossing U-turn: informational guide[R]. Washington DC: U. S. Federal Highway Administration, 2014. [9] SCHROEDER B, CUNNINGHAM C, RAY B, et al. Diverging diamond interchange: informational guide[R]. Washington DC: U. S. Federal Highway Administration, 2014. [10] STEYN H, BUGG Z, RAY B, et al. Displaced left turn intersection: informational guide[R]. Washington DC: U. S. Federal Highway Administration, 2014. [11] HUMMER J E. Unconventional left-turn alternative for urban and suburban arterials-part one[J]. ITE Journal, 1998, 68(9): 26-29. [12] BARED J G, KAISAR E I. Median U-turn design as an alternative treatment for left turns at signalized intersections[J]. ITE Journal, 2002, 72(2): 50-54. [13] LIU Pan, LU J J, CHEN H Y. Safety effects of the separation distances between driveway exits and downstream U-turn locations[J]. Accident Analysis and Prevention, 2008, 40(2): 760-767. doi: 10.1016/j.aap.2007.09.011 [14] 张宁, 陈恺, 高朝晖, 等. 基于微观仿真的远引掉头选址规划方法[J]. 交通运输工程学报, 2008, 8(1): 78-82. doi: 10.3321/j.issn:1671-1637.2008.01.016ZHANG Ning, CHEN Kai, GAO Zhao-hui, et al. Site planning method of U-turn followed by right-turn based on microsimulation[J]. Journal of Traffic and Transportation Engineering, 2008, 8(1): 78-82. (in Chinese). doi: 10.3321/j.issn:1671-1637.2008.01.016 [15] LU J J, PIRINCCIOGLU F, PERNIA J C. Safety evaluation of right-turns followed by U-turns at signalized intersection(6 or more lanes)as an alternative to direct left turns: conflict data analysis[R]. Tallahassee: Florida Department of Transportation, 2005. [16] 马万达, 冷兆华, 张海军. 信号控制交叉口U-turn设计及延误模型[J]. 中国市政工程, 2010, 4: 22-23, 28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSZ201004009.htmMA Wan-da, LENG Zhao-hua, ZHANG Hai-jun. On U-turn design of signal control intersection and its delay model[J]. China Municipal Engineering, 2010, 4: 22-23, 28. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSZ201004009.htm [17] OLARTE R, BARED J G, SUTHERLAND L F, et al. Density models and safety analysis for rural unsignalized restricted crossing U-turn intersections[J]. Procedia Social and Behavioral Sciences, 2011, 16: 718-728. doi: 10.1016/j.sbspro.2011.04.491 [18] AHMED K. Evaluation oflow cost technique"indirect right turn"to reduce congestion at urbanized signalized intersection in developing countries[J]. Procedia Social and Behavioral Sciences, 2011, 16: 568-577. doi: 10.1016/j.sbspro.2011.04.477 [19] EL ESAWEY M, SAYED T. Operational performance analysis of the unconventional median U-turn intersection design[J]. Canadian Journal of Civil Engineering, 2011, 38(11): 1249-1261. doi: 10.1139/l11-085 [20] 王富, 方可, 胡娟. U型回转交叉口通行能力计算模型[J]. 武汉理工大学学报, 2013, 35(3): 80-83. doi: 10.3963/j.issn.1671-4431.2013.03.016WANG Fu, FANG Ke, HU Juan. Study on capacity calculation model of U-turn intersection[J]. Journal of Wuhan University of Technology, 2013, 35(3): 80-83. (in Chinese). doi: 10.3963/j.issn.1671-4431.2013.03.016 [21] NAGHAWI H H, IDEWU W I A. Analysing delay and queue length using microscopic simulation for the unconventional intersection design superstreet[J]. Journal of the South African Institution of Civil Engineering, 2014, 56(1): 100-107. [22] 邓明君, 曲仕茹, 秦鸣. 基于延误的U-turn交通组织可行性分析方法[J]. 公路工程, 2014, 39(6): 119-123. doi: 10.3969/j.issn.1674-0610.2014.06.028DENG Ming-jun, QU Shi-ru, QIN Ming. Feasibility analysis method of U-turn traffic that based on delay[J]. Highway Engineering, 2014, 39(6): 119-123. (in Chinese). doi: 10.3969/j.issn.1674-0610.2014.06.028 [23] SHAHDAH U, ELSHABRAWY M, ELBADAWY S, et al. Comparing the performance of unconventional median U-turn intersections and signalized intersections: a simulation study[C]//Mansoura Conference. 8th International Engineering Conference. Sharm Al-Shiekh: Mansoura Conference, 2015: 1-10. [24] 林培群, 顾玉牧, 卓福庆, 等. 交叉口左转交通流两种组织方式的延误计算模型[J]. 华南理工大学学报(自然科学版), 2015, 43(12): 119-126. doi: 10.3969/j.issn.1000-565X.2015.12.017LIN Pei-qun, GU Yu-mu, ZHUO Fu-qing, et al. Delay models for two kinds of left-turn traffic flow organizations at intersection[J]. Journal of South China University of Technology(Natural Science Edition), 2015, 43(12): 119-126. (in Chinese). doi: 10.3969/j.issn.1000-565X.2015.12.017 [25] XIANG Yun, LI Zhi-bin, WANG Wei, et al. Evaluating the operational features of an unconventional dual-bay U-turn design for intersections[J]. Plos One, 2016, 11(7): e0158914. doi: 10.1371/journal.pone.0158914 [26] TAHA M, ABDELFATAH A. Impact of using indirect leftturns on signalized intersections'performance[J]. Canadian Journal of Civil Engineering, 2017, 44(6): 462-471. doi: 10.1139/cjce-2016-0259 [27] HUMMER J E, RAO S. Safety evaluation of signalized restricted crossing U-Turn intersections[R]. Washington DC: U. S. Federal Highway Administration, 2017. [28] 张卫华, 陈靖生, 董瑞娟. 道路平面交叉口次路远引几何参数设置及通行效率研究[J]. 土木工程学报, 2017, 50(10): 121-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201710015.htmZHANG Wei-hua, CHEN Jing-sheng, DONG Rui-juan. Study on geometrical parameter setup and efficiency of secondary road in intersection[J]. China Civil Engineering Journal, 2017, 50(10): 121-128. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201710015.htm [29] ZHAO Jing, MA Wan-jing, HEAD K L, et al. Improving the operational performance of two-quadrant parclo interchanges with median U-turn concept[J]. Transportmetrica B: Transport Dynamics, 2018, 6(3): 190-210. doi: 10.1080/21680566.2016.1249438 [30] 张卫华, 陈靖生, 董瑞娟, 等. T型交叉口主路左转远引设置方法及延误研究[J]. 重庆交通大学学报(自然科学版), 2018, 37(11): 91-96. doi: 10.3969/j.issn.1674-0696.2018.11.15ZHANG Wei-hua, CHEN Jing-sheng, DONG Rui-juan, et al. Research on the location of indirect left turn with U-turn at T-type intersections and delay[J]. Journal of Chongqing Jiaotong University(Natural Sciences), 2018, 37(11): 91-96. (in Chinese). doi: 10.3969/j.issn.1674-0696.2018.11.15 [31] OZGUVEN E E, ULAK M B, DULEBENETS M A. Development of safety performance functions for restricted crossing U-Turn (RCUT)intersections[R]. Tallahassee: Florida A &M Univeristy, 2019. [32] CHLEWICKI G. New interchange and intersection designs: the synchronized split-phasing intersection and the diverging diamond interchange[C]//TRB. 2nd Urban Street Symposium. Washington DC: TRB, 2003: 1-16. [33] BARED J G, EDARA P K, JAGANNATHAN R. Design and operational performance of double crossover intersection and diverging diamond interchange[J]. Transportation Research Record, 2005(1912): 31-38. [34] EDARA P K, BARED J G, JAGANNATHAN R. Diverging diamond interchange and double crossover intersection-vehicle and pedestrian performance[C]//TRB. 3rd International Symposium on Highway Geometric Design. Washington DC: TRB, 2005: 1-22. [35] CHLEWICKI G. Should the diverging diamond interchange always be considered a diamond interchange form?[J]. Transportation Research Record, 2011(2223): 88-95. [36] XU Hao, LIU Hong-chao, TIAN Zong, et al. Control delay calculation at diverging diamond interchanges[J]. Transportation Research Record, 2011(2257): 121-130. [37] ANDERSON M, SCHROER B, MOELLER D. Analyzing the diverging diamond interchange using discrete event simulation[J]. Modelling and Simulation in Engineering, 2012, 2012: 1-8. [38] RESSEL N R. Insights into the first three diverging diamond interchanges in Missouri[D]. Columbia: University of Missouri-Columbia, 2012. [39] RASBAND E, FORBUSH T, ASH K, et al. UDOT diverging diamond interchange(DDI)observations and experience[R]. Salt Lake City: Utah Department of Transportation, 2012. [40] MAJI A, MISHRA S, JHA M K. Diverging diamond interchange analysis: planning tool[J]. Journal of Transportation Engineering, 2013, 139(12): 1201-1210. doi: 10.1061/(ASCE)TE.1943-5436.0000603 [41] HU Pei-feng. Advanced signal control strategies and analysis methodologies for diverging diamond interchanges[D]. Reno: University of Nevada, 2013. [42] YANG Xian-feng, CHANG G L, RAHWANJI S. Development of a signal optimization model for diverging diamond interchange[J]. Journal of Transportation Engineering, 2014, 140(5): 04014010. doi: 10.1061/(ASCE)TE.1943-5436.0000657 [43] LEONG L V, MAHDI M B, CHIN K K. Microscopic simulation on the design and operational performance of diverging diamond interchange[J]. Transportation Research Procedia, 2015, 6: 198-212. doi: 10.1016/j.trpro.2015.03.016 [44] DAY C M, STEVENS A, STURDEVANT J R, et al. Evaluation of alternative intersections and interchanges: volumeⅡ-diverging diamond interchange signal timing[R]. Washington DC: U. S. Federal Highway Administration, 2015. [45] BARED J, GRANDA T, ZINEDDIN A. FHWA tech brief: drivers'evaluation of the diverging diamond interchange[R]. Washington DC: U. S. Federal Highway Administration, 2007. [46] ANDERSON M, SARDE K, KHAN T, et al. Simulation model of diverging diamond interchange for Alabama[J]. International Journal of Modelling and Simulation, 2015, 35(1): 1-6. doi: 10.1080/02286203.2015.1073889 [47] KHAN T, ANDERSON M. Evaluating the application of diverging diamond interchange in Athens, Alabama[J]. International Journal for Traffic and Transport Engineering, 2016, 6(1): 38-50. doi: 10.7708/ijtte.2016.6(1).04 [48] DUAN Xi, ABBAS M. Macroscopic calculation of delay for diverging diamond interchanges[C]//IEEE. 19th International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2016: 589-594. [49] CLAROS B, EDARA P, SUN C. Site-specific safety analysis of diverging diamond interchange ramp terminals[J]. Transportation Research Record, 2016(2556): 20-28. [50] CLAROS B, EDARA P, SUN C. When driving on the left side is safe: safety of the diverging diamond interchange ramp terminals[J]. Accident Analysis and Prevention, 2017, 100: 133-142. doi: 10.1016/j.aap.2017.01.014 [51] MOLAN A M. Evaluation of Milwaukee B and synchronized as new service interchange designs[D]. Detroit: Wayne State University, 2017. [52] MOLAN A M, HUMMER J E. Safety analysis of the new synchronized and Milwaukee B interchanges in comparison to existing designs[J]. Accident Analysis and Prevention, 2017, 109: 29-35. doi: 10.1016/j.aap.2017.09.026 [53] PARK S J. Sensitivity analysis of operational performance under conventional diamond interchange and diverging diamond interchange[D]. Atlanta: Georgia Institute of Technology, 2017. [54] GUIN A, HUNTER M, RODGERS M. Operating performance of diverging diamond interchanges[R]. Forest Park: Georgia Department of Transportation, 2018. [55] MOLAN A M, HUMMER J E. Simulation modeling of pedestrian performance in the new synchronized and Milwaukee Binterchanges versus existing designs[J]. Transportation Research Record, 2018, 2672(35): 151-160. doi: 10.1177/0361198118781652 [56] DIDIER M V, BENJAMÍN C R, ALBERTO M R. Framework for considering a diverging diamond interchange to improve operations and safety[C]//LACCEI. 17th LACCEI International Multi-Conference for Engineering, Education, and Technology: "Industry, Innovation, and Infrastructure for Sustainable Cities and Communities". Boca Raton: LACCEI, 2019: 1-8. [57] MOLAN A M, HUMMER J E, KSAIBATI K. Modeling safety performance of the new super DDI design in terms of vehicular traffic and pedestrian[J]. Accident Analysis and Prevention, 2019, 127: 198-209. doi: 10.1016/j.aap.2019.03.008 [58] NYE T S, CUNNINGHAM C M, BYROM E. National-level safety evaluation of diverging diamond interchanges[J]. Transportation Research Record, 2019, 2673(7): 696-708. doi: 10.1177/0361198119849589 [59] 潘兵宏, 董怡伽, 赵亚茹, 等. 菱形立交双钮型平面交叉口交叉结点最小间距[J]. 北京工业大学学报, 2019, 45(3): 283-291. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201903010.htmPAN Bing-hong, DONG Yi-jia, ZHAO Ya-ru, et al. Minimum spacing between crossovers of double crossover intersection in diamond interchange[J]. Journal of Beijing University of Technology, 2019, 45(3): 283-291. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201903010.htm [60] ZHAO Jing, MA Wan-jing, ZHANG H M, et al. Increasing the capacity of signalized intersections with dynamic use of exit lanes for left-turn traffic[J]. Transportation Research Record, 2013(2355): 49-59. [61] 田云强, 商振华. 城市道路交叉口出口道可变车道设置研究[J]. 城市交通, 2014, 12(1): 74-80. doi: 10.3969/j.issn.1672-5328.2014.01.015TIAN Yun-qiang, SHANG Zhen-hua. Design of reversible exit lanes at urban at-grade intersections[J]. Urban Transport of China, 2014, 12(1): 74-80. (in Chinese). doi: 10.3969/j.issn.1672-5328.2014.01.015 [62] ZHAO Jing, YUN Mei-ping, ZHANG H M, et al. Driving simulator evaluation of drivers'response to intersections with dynamic use of exit-lanes for left-turn[J]. Accident Analysis and Prevention, 2015, 81: 107-119. doi: 10.1016/j.aap.2015.04.028 [63] WU Jia-ming, LIU Pan, TIAN Z Z, et al. Operational analysis of the contraflow left-turn lane design at signalized intersections in China[J]. Transportation Research Part C: Emerging Technologies, 2016, 69: 228-241. doi: 10.1016/j.trc.2016.06.011 [64] XIE Si-yang, JIANG Hai. Increasing the capacity of signalized intersections by allocating exit lanes to turning movements[J]. Journal of Advanced Transportation, 2016, 50(8): 2239-2265. doi: 10.1002/atr.1457 [65] SU Peng, KRAUSE C, HALE D, et al. Operational advantages of contraflow left-turn pockets at signalized intersections[J]. ITE Journal, 2016, 86(7): 44. [66] ZHAO Jing, LIU Yue. Safety evaluation of intersections with dynamic use of exit-lanes for left-turn using field data[J]. Accident Analysis and Prevention, 2017, 102: 31-40. doi: 10.1016/j.aap.2017.02.023 [67] 赵靖, 马万经, 韩印. 出口车道左转交叉口几何及信号组合优化模型[J]. 中国公路学报, 2017, 30(2): 120-127. doi: 10.3969/j.issn.1001-7372.2017.02.014ZHAO Jing, MA Wan-jing, HAN Yin. Integrated optimization model of layouts and signal timings of exit-lanes for left-turn intersections[J]. China Journal of Highway and Transport, 2017, 30(2): 120-127. (in Chinese). doi: 10.3969/j.issn.1001-7372.2017.02.014 [68] 崔凯. 左转逆向可变车道的优化设计与控制策略[D]. 济南: 山东大学, 2017.CUI Kai. Optimal design and control strategy of left-turn reverse variable lane[D]. Jinan: Shandong University, 2017. (in Chinese). [69] 梁培佳. 十字交叉口设置逆向可变车道后信号配时设计与仿真研究[D]. 北京: 北京交通大学, 2017.LIANG Pei-jia. Research on signal timing design and simulation of the intersection of reverse variable lane[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese). [70] ZHAO Yi, JAMES R M, XIAO Lin, et al. A capacity estimation model for a contraflow left-turn pocket lane at signalized intersections[J]. Transportation Research Record, 2018, 2672(17): 22-34. doi: 10.1177/0361198118787978 [71] 陈松, 李显生, 王运豪, 等. 借对向出口车道左转交叉口交通控制方案优化[J]. 哈尔滨工业大学学报, 2018, 50(3): 74-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201803010.htmCHEN Song, LI Xian-sheng, WANG Yun-hao, et al. Traffic control plan optimization for the intersection with contraflow left-turn lane[J]. Journal of Harbin Institute of Technology, 2018, 50(3): 74-82. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201803010.htm [72] ZHAO Jing, YU Jie, ZHOU Xi-zhao. Saturation flow models of exit lanes for left-turn intersections[J]. Journal of Transportation Engineering, Part A: Systems, 2018, 145(3): 04018090. [73] 赵靖, 丁神健, 马晓旦, 等. 基于实测数据的出口车道左转交叉口饱和流率修正[J]. 公路交通科技, 2018, 35(7): 107-113. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201807015.htmZHAO Jing, DING Shen-jian, MA Xiao-dan, et al. Revision of saturation flow rate for intersection using exit-lanes for left-turn based on measured data[J]. Journal of Highway and Transportation Research and Development, 2018, 35(7): 107-113. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201807015.htm [74] CHEN Qun, YI Jia-xuan, WU Yu-li. Cellular automaton simulation of vehicles in the contraflow left-turn lane at signalized intersections[J]. IET Intelligent Transport Systems, 2019, 13(7): 1164-1172. doi: 10.1049/iet-its.2018.5451 [75] WU Jia-ming, LIU Pan, QIN Xiao, et al. Developing an actuated signal control strategy to improve the operations of contraflow left-turn lane design at signalized intersections[J]. Transportation Research Part C: Emerging Technologies, 2019, 104: 53-65. doi: 10.1016/j.trc.2019.04.028 [76] 李耿华. 一种新型借道左转应用方法[J]. 现代交通技术, 2019, 16(2): 55-58. doi: 10.3969/j.issn.1672-9889.2019.02.014LI Geng-hua. A new application of contraflow left-turn lane[J]. Modern Transportation Technology, 2019, 16(2): 55-58. (in Chinese). doi: 10.3969/j.issn.1672-9889.2019.02.014 [77] WU Jian-ping, HOUNSELL N. Bus priority using pre-signals[J]. Transportation Research Part A: Policy and Practice, 1998, 32(8): 563-583. doi: 10.1016/S0965-8564(98)00008-1 [78] XUAN Yi-guang, DAGANZO C F, CASSIDY M J. Increasing the capacity of signalized intersections with separate left turn phases[J]. Transportation Research Part B: Methodological, 2011, 45(5): 769-781. doi: 10.1016/j.trb.2011.02.009 [79] XUAN Yi-guang. Increasing the flow capacity of signalized intersections with pre-signals: theory and case study[D]. Berkeley: University of California, Berkeley, 2011. [80] XUAN Yi-guang, GAYAH V V, CASSIDY M J, et al. Presignal used to increase bus-and car-carrying capacity at intersections: theory and experiment[J]. Transportation Research Record, 2012(2315): 191-196. [81] 江金胜, 董力耘. 信号灯交叉口处综合待行区的建模与模拟[J]. 上海大学学报(自然科学版), 2012, 18(6): 606-611. https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201206012.htmJIANG Jin-sheng, DONG Li-yun. Modeling and simulation of versatile waiting-area at isolated signalized intersection[J]. Journal of Shanghai University (Natural Science Edition), 2012, 18(6): 606-611. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201206012.htm [82] XIA Xi, HE Zhao-cheng, SUN Wen-bo, et al. Traffic impact analysis of urban intersections with comprehensive waiting area on urban intersection based on PARAMICS[J]. ProcediaSocial and Behavioral Sciences, 2013, 96: 1910-1920. doi: 10.1016/j.sbspro.2013.08.216 [83] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(3): 633-639. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201303012.htmMA Wan-jing, XIE Han-zhou. Integrated control of mainsignal and pre-signal on approach of intersection with double stop line[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(3): 633-639. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201303012.htm [84] YAN Chi-wei, JIANG Hai, XIE Si-yang. Capacity optimization of an isolated intersection under the phase swap sorting strategy[J]. Transportation Research Part B: Methodological, 2014, 60: 85-106. doi: 10.1016/j.trb.2013.12.001 [85] ZHOU Ya-ping, ZHUANG Hong-bin. The optimization of lane assignment and signal timing at the tandem intersection with pre-signal[J]. Journal of Advanced Transportation, 2014, 48(4): 362-376. doi: 10.1002/atr.1222 [86] YANG Qiao-li, SHI Zhong-ke. Performance analysis of the phase swap sorting strategy for an isolated intersection[J]. Transportation Research Part C: Emerging Technologies, 2017, 77: 366-388. doi: 10.1016/j.trc.2017.01.018 [87] 成卫, 王勇, 袁满荣. 基于交通运行效益评价的综合待行区预信号控制研究[J]. 重庆交通大学学报(自然科学版), 2017, 36(11): 78-84. doi: 10.3969/j.issn.1674-0696.2017.11.15CHENG Wei, WANG Yong, YUAN Man-rong. Pre-signal control of comprehensive waiting area based on traffic operation benefit evaluation[J]. Journal of Chongqing Jiaotong University(Natural Sciences), 2017, 36(11): 78-84. (in Chinese). doi: 10.3969/j.issn.1674-0696.2017.11.15 [88] BIE Yi-ming, LIU Zhi-yuan, WANG Yin-hai. A real-time traffic control method for the intersection with pre-signals under the phase swap sorting strategy[J]. Plos One, 2017, 12(5): e0177637. doi: 10.1371/journal.pone.0177637 [89] 杜倩. 平面交叉口综合待行区的交通组织优化设计研究[D]. 成都: 西南交通大学, 2017.DU Qian. The traffic organization optimization of intersection comprehensive waiting area[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese). [90] SUN Wei-li, ZHENG Jian-feng, LIU H X. A capacity maximization scheme for intersection management with automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2018, 94: 19-31. doi: 10.1016/j.trc.2017.12.006 [91] 姚宇, 邓明君. 综合等待区用于交叉口的优化设计与仿真[J]. 华东交通大学学报, 2018, 35(2): 80-88. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201802011.htmYAO Yu, DENG Ming-jun. Optimization design and simulation application of integrated waiting area at urban intersection[J]. Journal of East China Jiaotong University, 2018, 35(2): 80-88. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201802011.htm [92] 马晓旦, 秦旗. 针对施工期交叉口提出的排阵式信号控制设计优化方法[J]. 物流科技, 2018, 41(10): 52-55, 61. doi: 10.3969/j.issn.1002-3100.2018.10.016MA Xiao-dan, QIN Qi. Design optimization method for array signal control proposed for intersections during construction period[J]. Logistics Sci-tech, 2018, 41(10): 52-55, 61. (in Chinese). doi: 10.3969/j.issn.1002-3100.2018.10.016 [93] LI Yan, NAN Si-rui, GONG Xiao-lin, et al. A geometric design method for intersections with pre-signal systems using aphase swap sorting strategy[J]. Plos One, 2019, 14(5): e0217741. doi: 10.1371/journal.pone.0217741 [94] ZHAO Jing, YAN Jia-chao, WANG Jia-wen. Analysis of alternative treatments for left turn bicycles at tandem intersections[J]. Transportation Research Part A: Policy and Practice, 2019, 126: 314-328. doi: 10.1016/j.tra.2019.06.020 [95] 赵靖, 郑喆, 韩印. 排阵式交叉口延误及最佳周期模型[J]. 中国公路学报, 2019, 32(3): 135-144. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201903016.htmZHAO Jing, ZHENG Zhe, HAN Yin. Delay and optimal cycle length model for tandem intersections[J]. China Journal of Highway and Transport, 2019, 32(3): 135-144. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201903016.htm [96] 郑喆, 马万经, 赵靖. 排阵式交叉口交通安全分析及鲁棒优化模型[J]. 同济大学学报(自然科学版), 2019, 47(7): 984-993. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201907010.htmZHENG Zhe, MA Wan-jing, ZHAO Jing. Analysis of traffic safety and robust optimization model for tandem intersection[J]. Journal of Tongji University (Natural Science), 2019, 47(7): 984-993. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201907010.htm [97] BARTHAUER M, FRIEDRICH B. Presorting and presignaling: a new intersection operation mode for autonomous and humanoperated vehicles[J]. Transportation Research Procedia, 2019, 37: 179-186. doi: 10.1016/j.trpro.2018.12.181 [98] 安实, 宋浪, 王健, 等. 借用公交专用道左转的主预信号控制方案优化[J]. 中国公路学报, 2020, 33(4): 115-125. doi: 10.3969/j.issn.1001-7372.2020.04.012AN Shi, SONG Lang, WANG Jian, et al. Main and presignal control scheme optimization of turning left by using bus lanes[J]. China Journal of Highway and Transport, 2020, 33(4): 115-125. (in Chinese). doi: 10.3969/j.issn.1001-7372.2020.04.012 [99] MIER F D, ROMO B H. Continuous flow intersection: U. S., 5049000[P]. 1991-09-17. [100] JAGANNATHAN R, BARED J G. Design and performance analysis of pedestrian crossing facilities for continuous flow intersections[J]. Transportation Research Record, 2005(1939): 133-144. [101] PITAKSRINGKARN J P. Measures of effectiveness for continuous flow intersection: a Maryland intersection case study[C]//ITE. ITE 2005Annual Meeting and Exhibit Compendium of Technical Papers. Washington DC: ITE, 2005: 1-6. [102] INMAN V W. Evaluation of signs and markings for partial continuous flow intersection[J]. Transportation Research Record, 2009(2138): 66-74. [103] PARK S, RAKHA H. Continuous flow intersections: a safety and environmental perspective[C]//IEEE. 13th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2010: 85-90. [104] TANWANICHKUL L, PITAKSRINGKARN J, BOONCHAWEE S. Determining the optimum distance of continuous flow intersection using traffic micro-simulation[J]. Journal of the Eastern Asia Society for Transportation Studies, 2011, 9: 1670-1683. [105] COATES A M. Using adaptive signal control to prioritize pedestrian crossing at continuous flow intersections[D]. Akron: University of Akron, 2013. [106] YAHL M E. Safety effects of continuous flow intersections[D]. Raleigh: North Carolina State University, 2013. [107] YANG Xian-feng, CHANG G L, RAHWANJI S, et al. Development of planning-stage models for analyzing continuous flow intersections[J]. Journal of Transportation Engineering, 2013, 139(11): 1124-1132. doi: 10.1061/(ASCE)TE.1943-5436.0000596 [108] 刘秋晨, 张轮, 杨文臣, 等. 城市道路新型连续流交叉口的设计及仿真[J]. 交通信息与安全, 2013, 31(2): 122-127. doi: 10.3963/j.issn.1674-4861.2013.02.027LIU Qiu-chen, ZHANG Lun, YANG Wen-chen, et al. Design and simulation of a new continuous flow intersection for urban road[J]. Journal of Transport Information and Safety, 2013, 31(2): 122-127. (in Chinese). doi: 10.3963/j.issn.1674-4861.2013.02.027 [109] COATES A, YI Ping, LIU Peng, et al. Geometric and operational improvements at continuous flow intersections to enhance pedestrian safety[J]. Transportation Research Record, 2014(2436): 60-69. [110] SUN Wei-li, WU Xin-kai, WANG Yun-peng, et al. Acontinuous-flow-intersection-lite design and traffic control for oversaturated bottleneck intersections[J]. Transportation Research Part C: Emerging Technologies, 2015, 56: 18-33. doi: 10.1016/j.trc.2015.03.011 [111] YANG Xian-feng, CHENG Yao, CHANG G L. Operational analysis and signal design for asymmetric two-leg continuous-flow intersection[J]. Transportation Research Record, 2016(2553): 72-81. [112] ZHAO Jing, LIU Yue, DI Di. Optimization model for layout and signal design of full continuous flow intersections[J]. Transportation Letters, 2016, 8(4): 194-204. doi: 10.1080/19427867.2015.1109752 [113] 周亚平, 陈凤权, 王永. 基于两种非传统交叉口通行能力的综合优化模型[J]. 公路交通科技, 2016, 33(4): 134-141. doi: 10.3969/j.issn.1002-0268.2016.04.021ZHOU Ya-ping, CHEN Feng-quan, WANG Yong. An integrated capacity optimization model based on two unconventional intersections[J]. Journal of Highway and Transportation Research and Development, 2016, 33(4): 134-141. (in Chinese). doi: 10.3969/j.issn.1002-0268.2016.04.021 [114] YANG Xian-feng, CHENG Yao. Development of signal optimization models for asymmetric two-leg continuous flow intersections[J]. Transportation Research Part C: Emerging Technologies, 2017, 74: 306-326. doi: 10.1016/j.trc.2016.11.021 [115] BEDINI A, ZHANG L, GARONI T M. A case study of a continuous flow intersection and its impact on public transport[C]//IEEE. 2017IEEE 20th International Conference on Intelligent Transportation Systems. New York: IEEE, 2017: 959-964. [116] ZLATKOVIĆ M, KERGAYE C. Development of crash modification factors for continuous flow intersections[J]. Journal of Road and Traffic Engineering, 2018, 64(3): 5-11. [117] WOLFGRAM J. A safety and emissions analysis of continuous flow intersections[D]. Amherst: University of Massachusetts Amherst, 2018. [118] 赵靖, 徐海军, 高幸, 等. 连续流交叉口左转非机动车优化设计方法[J]. 交通运输系统工程与信息, 2018, 18(6): 178-186. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201806025.htmZHAO Jing, XU Hai-jun, GAO Xing, et al. Optimization design method of left-turn bicycles crossing for continuous flow intersections[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(6): 178-186. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201806025.htm [119] 常云涛, 王奕彤. 连续流交叉口信号配时优化模型[J]. 公路交通科技, 2018, 35(4): 93-101. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201804012.htmCHANG Yun-tao, WANG Yi-tong. An optimal timing model for continuous flow intersection[J]. Journal of Highway and Transportation Research and Development, 2018, 35(4): 93-101. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201804012.htm [120] 钱萍, 邓建华. 连续流交叉口左转车道交通适用条件研究[J]. 交通科技与经济, 2018, 20(5): 45-48, 54. https://www.cnki.com.cn/Article/CJFDTOTAL-KJJJ201805009.htmQIAN Ping, DENG Jian-hua. On the applicable conditions of left turn lane traffic in the continuous flow intersection[J]. Technology and Economy in Areas of Communications, 2018, 20(5): 45-48, 54. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJJJ201805009.htm [121] ZHAO Jing, GAO Xing, KNOOP V L. An innovative design for left turn bicycles at continuous flow intersections[J]. Transportmetrica B: Transport Dynamics, 2019, 7(1): 1305-1322. doi: 10.1080/21680566.2019.1614496 [122] WANG Tao, ZHAO Jing, LI Chao-yang. Pedestrian delay model for continuous flow intersections under three design patterns[J]. Mathematical Problems in Engineering, 2019, 2019: 1-13. [123] 华雪东, 王宝杰, 阳建强, 等. 设置移位左转的纵列式信号交叉口设计及优化[J]. 长安大学学报(自然科学版), 2019, 39(1): 107-115, 126. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201901014.htmHUA Xue-dong, WANG Bao-jie, YANG Jian-qiang, et al. Design and optimization of signalized tandem intersections with displaced left-turn[J]. Journal of Chang'an University(Natural Science Edition), 2019, 39(1): 107-115, 126. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201901014.htm [124] 蒋贤才, 高苏, 张龙洋. 一种改进的移位左转车道信号控制方法及其效用分析[J]. 中国公路学报, 2019, 32(9): 152-163. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201909016.htmJIANG Xian-cai, GAO Su, ZHANG Long-yang. Signal control and utility analysis of an improved displaced left-turn lane[J]. China Journal of Highway and Transport, 2019, 32(9): 152-163. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201909016.htm [125] 马景峰. 高负荷城市交叉口处移位左转的交通组织研究[D]. 西安: 长安大学, 2019.MA Jing-feng. Study on traffic organization of displaced leftturn at urban intersection with heavy load[D]. Xi'an: Chang'an University, 2019. (in Chinese). [126] PARSONS G F. The parallel flow intersection: a new twophase signal alternative[J]. ITE Journal, 2007, 77(10): 28-32, 37. [127] PARSONS G F. The parallel flow intersection: a new high capacity urban intersection[C]//IET. The Fifth Advanced Forum on Transportation of China. London: IET, 2009: 143-150. [128] LI Jing, CHU Yuan, ZENG Lu-wei. The application of parallel flow intersection: discussion on asymmetric flow input and area restriction[C]//CICTP. The 19th International Conference of Transportation Professionals. Nanjing: CICTP, 2019: 2996-3007. [129] 安实, 宋浪, 王健, 等. 平行流交叉口信号控制策略及效益分析[J]. 交通运输系统工程与信息, 2020, 20(3): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202003012.htmAN Shi, SONG Lang, WANG Jian, et al. Signal control strategy and benefit analysis of parallel flow intersection[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(3): 75-82. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202003012.htm [130] 宋浪. 平行流交叉口人车信号协调优化控制策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.SONG Lang. Research on optimization control strategy of human-vehicle signal coordination at parallel flow intersection[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese). [131] ESAWEY M E, SAYED T. Comparison of two unconventional intersection schemes: crossover displaced left-turn and upstream signalized crossover intersections[J]. Transportation Research Record, 2007(2023): 10-19. [132] CHEONG S, RAHWANJI S, CHANG G L. Comparison of three unconventional arterial intersection designs: continuous flow intersection, parallel flow intersection, and upstream signalized crossover[C]//IEEE. 11th International IEEEConference on Intelligent Transportation Systems. New York: IEEE, 2008: 1-7. [133] DHATRAK A, EDARA P, BARED J G. Performance analysis of parallel flow intersection and displaced left-turn intersection designs[J]. Transportation Research Record, 2010(2171): 33-43. [134] AUTEY J, SAYED T, EL ESAWEY M. Operational performance comparison of four unconventional intersection designs using micro-simulation[J]. Journal of Advanced Transportation, 2013, 47(5): 536-552. [135] ZHAO Jing, MA Wan-jing, HEAD K L, et al. Optimal operation of displaced left-turn intersections: a lane-based approach[J]. Transportation Research Part C: Emerging Technologies, 2015, 61: 29-48. [136] ALMOSHAOGEH M. Developing warrants for designing continuous flow intersection and diverging diamond interchange[D]. Orlando: University of Central Florida, 2017. [137] SHOKRYA S, TANAKAB S, NAKAMURAC F, et al. Operational performance comparison between conventional intersections and two unconventional alternative intersection designs (UAIDs)under heterogeneous traffic conditions in Cairo, Egypt[C]//WCTR. World Conference on Transport Research. Mumbai: Transportation Research Procedia, 2018: 1-16. [138] ZHONG Zi-jia, LEE E E. Alternative intersection designs with connected and automated vehicle[C]//IEEE. 2019IEEE2nd Connected and Automated Vehicles Symposium (CAVS). New York: IEEE, 2019: 1-6. [139] CHU Yuan, LI Jing, LUO Si-da, et al. Displaced left-turn intersection: a two-stage model and application insight[C]//CICTP. The 19th International Conference of Transportation Professionals. Nanjing: CICTP, 2019: 2763-2775. [140] XIA Hai-tao, BORIBOONSOMSIN K, BARTH M. Dynamic eco-driving for signalized arterial corridors and its indirect network-wide energy/emissions benefits[J]. Journal of Intelligent Transportation Systems, 2013, 17(1): 31-41.