Temporal and spatial characteristics of moisture migration and instability mechanism of cracked soil slope under rainfall infiltration
-
摘要: 为探究降雨入渗下裂土边坡水分运移时空特征与失稳机理, 自主研制了足尺模型试验系统和光纤布拉格光栅(FBG)深部柔性位移系统, 对边坡渐进破坏进行了全过程、多物理量联合监测, 揭示了降雨入渗作用下裂土边坡的渐进变形和破坏演化模式; 基于裂土边坡的渐进破坏模式, 提出了土体饱和比概念, 将裂隙深度范围滑体分为饱和层和非饱和层; 以土体饱和度变化描述了含随机分布裂隙的边坡水分运移规律, 并结合刚体极限平衡法探讨了由裂隙控制的边坡失稳机制。研究结果表明: 对于未形成裂隙的边坡, 连续降小雨时浅层变形受表层基质吸力控制; 裂隙形成后, 雨水沿裂隙快速入渗形成暂态饱和区, 导致基质吸力降幅达82.50%~87.14%, 而由其贡献的抗剪强度迅速损失, 从而形成初期溜滑、片蚀等浅层变形, 降雨停止后坡体仍处于蠕变过程, 坡脚与坡顶位移增幅分别为23.40%和19.39%;蒸发后裂隙规模发展增大了雨水对渗流场的影响范围和边坡破坏规模; 土体经历胀缩、蠕变而变得松散, 裂缝区深部土体体积含水率较初始状态的增幅为205.7%;同一降雨条件下, 初始裂隙深度愈深, 稳定系数愈低, 破坏愈快; 对具有同一裂隙深度的边坡, 其稳定系数随土体饱和比的增加逐渐降低, 土体饱和比增长愈快, 表征边坡内部出现大面积连通型饱和区, 这是裂土边坡出现整体失稳的主要原因。Abstract: To reveal the temporal and spatial characteristics of moisture migration and instability mechanism of cracked soil slope under the rainfall infiltration. The full-scale model test and fiber Bragg grating(FBG) displacement systems were developed independently to conduct the whole-process and multi-physical monitoring of slope progressive failure. The progressive deformation and failure evolution mode of cracked soil slope under the rainfall infiltration were revealed. Based on the progressive failure mode of cracked soil slope, the concept of soil saturation ratio was proposed. The sliding body within the crack depth range was divided into the saturated layer and unsaturated layer. The change of soil saturation degree was used to describe the water transport law of slope with randomly distributed cracks, and the slope instability mechanism controlled by cracks was discussed by combining with the rigid body limit equilibrium method. Research result indicates that the shallow deformation is controlled by the surface matrix suction in the case of continuous light rain for the slope without cracks. After the formation of cracks, the rainwater infiltrates rapidly along the cracks to form a transient saturated zone. It causes a rapid loss of shear strength contributed by the matrix suction with a drop of 82.50%-87.14%, and produces the initial slip flow, sheet erosion and other shallow deformations. After the rainfall stops, the slope is still in the creep process, and the displacements of slope foot and roof increase by 23.40% and 19.39%, respectively. After the evaporation, the development of crack increases the influence range of rainwater on the seepage field and slope failure scale. The soil becomes loose after experienced swelling, shrinking and creep process. The volumetric moisture content of soil at the deep layer of crack zone increases by 205.7% compared with the initial state. Under the same rainfall condition, the deeper the initial crack depth is, the lower the stability coefficient is, and the faster the failure occurs. For a slope with the same crack depth, its stability coefficient decreases with the increase of soil saturation ratio. The faster the soil saturation ratio increases, the wider the connected saturated zone inside the slope is. It is the main reason for the overall instability of cracked soil slope.
-
表 1 土体物理力学参数
Table 1. Physical and mechanical parameters of soil
土体基本物理性质指标 天然干密度/(g·cm-3) 天然质量含水率/% 最大干密度/(g·cm-3) 最优质量含水率/% 饱和体积含水率/% 液限/% 塑限/% 实测值 1.59 13.8 1.71 16.5 48.2 35.7 18.4 土体基本力学性质指标 缩限/% 峰值黏聚力/kPa 内摩擦角/(°) 残余黏聚力/kPa 残余内摩擦角/(°) 自由膨胀率/% 土体相对密度 实测值 8.2 34.86 16.97 8.2 5.1 42.5 2.71 表 2 模型边坡变形全过程特征
Table 2. Characteristics of whole deformation process of slope model
典型变形时间结束节点/h 降雨阶段 破坏阶段 变形现象描述 26.45 连续小雨 片蚀 静置期出现的胀缩裂隙较浅, 雨水快速进入裂隙后, 导致裂隙周围土体很快形成暂态饱和, 坡面出现片蚀破坏 95.20 溜滑 随着裂隙底部土体逐渐饱和, 边坡中部、坡脚表层土体因重度增大发生溜滑 100.13 蠕滑 坡中部表层以下30 cm处逐渐饱和, 并牵引坡肩顶部沿冲沟出现蠕滑下错, 坡顶下错位移为2.5 cm 120.00 表层牵引式剧烈滑移 边坡出现深约45 cm的剧烈滑移, 坡中、坡脚为滑流形式, 牵引坡顶坍塌 126.00 蒸发阶段 坡体蠕变 干燥期间湿润锋逐渐下移, 深部土体逐渐饱和并出现蠕动变形, 并牵引坡顶土体形成张拉裂隙 196.00 裂隙加深 在胀缩裂隙与张拉裂隙共同作用下, 裂隙宽度和深度增加, 坡脚形成羽毛状次生裂隙, 形成更多渗流通道 208.53 短时强降雨 后缘张拉裂隙贯通, 坡体整体垮塌 后缘裂隙贯通, 坡顶径流直接进入贯通裂隙, 边坡中上部土体由于饱和重度增加, 随即边坡后缘出现推移式滑移破坏, 形成了整体式坍塌 240.00 后壁形成陡坡, 在重力作用下继续坍塌 地表径流主要沿冲沟流出坡面, 变形趋于平缓, 滑坡后壁较陡, 坡脚趋于饱和 表 3 滑移主断面各高程处累计水平位移
Table 3. Accumulated horizontal displacements at all elevations of sliding main section
自上而下测绳位置/cm 不同时间(h)的累计水平位移/cm 208 240 40 53.2 147.7 80 60.7 143.2 120 37.3 141.3 160 64.8 133.3 200 48.6 111.6 240 20.8 28.0 表 4 不同土体的拟合参数
Table 4. Fitting parameters for different types of soils
土体分类 λ A 软土 0.4 100 硬黏土 0.4 100 中砂 0.4 40 粗砂 0.4 40 表 5 模型计算参数
Table 5. Calculation parameters of model
参数 参数值 数据来源 K/h-1 6.9×10-7 双环渗透试验 A 100 硬黏土[18] λ 0.4 β 3.1 c′/kPa 8.2 室内环剪试验 φ/(°) 5.1 α/(°) 45 几何模型参数 n 0.5 室内试验 H/m 1.0、1.4、1.8 模型试验 g 2.71 室内试验 θs/% 48.2 室内试验 θr/% 6.0 V-G模型非线性拟合 h′/(mm·h-1) 45.2、100.6 模型试验 -
[1] 黄振鹤, 陈自福. 马巢高速公路边坡坍塌、滑动原因分析及治理[J]. 公路交通科技(应用技术版), 2013(12): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201312009.htmHUANG Zhen-he, CHEN Zi-fu. Analysis and control of slope collapse and slide of Machao Expressway[J]. Journal of Highway and Transportation Research and Development (Application Technology Edition), 2013(12): 28-33. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201312009.htm [2] 马佳. 裂土优势流与边坡稳定性分析方法[D]. 武汉: 中国科学院武汉岩土力学研究所, 2007.MA Jia. Preferential flow and stability analysis method for fissure clay slopes[D]. Wuhan: Wuhan Institute of Rock and Soil Mechanics of Chinese Academy of Sciences, 2007. (in Chinese). [3] HE Peng, LI Shu-cai, XIAO Jie, et al. Shallow sliding failure prediction model of expansive soil slope based on gaussian process theory and its engineering application[J]. KSCE Journal of Civil Engineering, 2018, 22(5): 1709-1719. doi: 10.1007/s12205-017-1934-6 [4] SALCIARINI D, GODT J W, SAVAGE W Z, et al. Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of Central Italy[J]. Landslides, 2006, 3: 181-194. doi: 10.1007/s10346-006-0037-0 [5] ZHANG Jian, ZHU D, ZHANG Shi-hua. Shallow slope stability evolution during rainwater infiltration considering soil cracking state[J]. Computers and Geotechnics, 2020, 117: 103285. doi: 10.1016/j.compgeo.2019.103285 [6] BAKER R. Tensile strength, tension cracks, and stability of slopes[J]. Soils and Foundations, 1981, 21(2): 1-17. doi: 10.3208/sandf1972.21.2_1 [7] LEE F H, LO K W, LEE S L. Tension crack development in soils[J]. Journal of Geotechnical Engineering, 1988, 114(8): 915-929. doi: 10.1061/(ASCE)0733-9410(1988)114:8(915) [8] OCAKOGLU F, GOKCEOGLU C, ERCANOGLU M. Dynamics of a complex mass movement triggered by heavy rainfall: a case study from NW Turkey[J]. Geomorphology, 2002, 42(3/4): 329-341. [9] DAMIANO E, GRECO R, GUIDA A, et al. Investigation on rainwater infiltration into layered shallow covers in pyroclastic soils and its effect on slope stability[J]. Engineering Geology, 2017, 220: 208218. [10] PEI Pei, ZHAO Yan-lin, NI Peng-peng, et al. A protective measure for expansive soil slopes based on moisture content control[J]. Engineering Geology, 2020, 269: 105527-1-13. doi: 10.1016/j.enggeo.2020.105527 [11] KHAN M S, HOSSAIN S, AHMED A, et al. Investigation of a shallow slope failure on expansive clay in Texas[J]. Engineering Geology, 2016, 219: 118-129. [12] HENCHER S R. Preferential flow paths through soil and rock and their association with landslides[J]. Hydrological Processes, 2010, 24(12): 1610-1630. doi: 10.1002/hyp.7721 [13] 范秋雁, 刘金泉, 杨典森, 等. 不同降雨模式下膨胀岩边坡模型试验研究[J]. 岩土力学, 2016, 37(12): 3401-3409. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612008.htmFAN Qiu-yan, LIU Jin-quan, YANG Dian-sen, et al. Model test study of expansive rock slope under different types of precipitation[J]. Rock and Soil Mechanics, 2016, 37(12): 3401-3409. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612008.htm [14] 张雨灼, 王柳江, 刘斯宏, 等. 干湿循环下膨胀土边坡响应的模型试验[J]. 郑州大学学报(工学版), 2015, 36(6): 114-118. doi: 10.3969/j.issn.1671-6833.2015.06.023ZHANG Yu-zhuo, WANG Liu-jiang, LIU Si-hong, et al. Model test on the performance of the expansive soil slope during wetting-drying cycles[J]. Journal of Zhengzhou University (Engineering Science), 2015, 36(6): 114-118. (in Chinese). doi: 10.3969/j.issn.1671-6833.2015.06.023 [15] 李卓, 何勇军, 李宏恩, 等. 前期降雨作用下边坡滑坡模型试验[J]. 河海大学学报(自然科学版), 2016, 44(5): 400-405. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201605004.htmLI Zhuo, HE Yong-jun, LI Hong-en, et al. Model test on slope landslides under antecedent rainfall[J]. Journal of Hohai University (Natural Sciences), 2016, 44(5): 400-405. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201605004.htm [16] 许旭堂, 简文彬, 吴能森, 等. 降雨诱发残积土坡失稳的模型试验[J]. 中国公路学报, 2018, 31(2): 270-279. doi: 10.3969/j.issn.1001-7372.2018.02.029XU Xu-tang, JIAN Wen-bin, WU Neng-sen, et al. Model test of rainfall-induced residual soil slope failure[J]. China Journal of Highway and Transport, 2018, 31(2): 270-279. (in Chinese). doi: 10.3969/j.issn.1001-7372.2018.02.029 [17] 常金源, 包含, 伍法权, 等. 降雨条件下浅层滑坡稳定性探讨[J]. 岩土力学, 2015, 36(4): 995-1001. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201504013.htmCHANG Jin-yuan, BAO Han, WU Fa-quan, et al. Discussion on stability of shallow landslide under rainfall[J]. Rock and Soil Mechanics, 2015, 36(4): 995-1001. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201504013.htm [18] 李宁, 许建聪, 钦亚洲. 降雨诱发浅层滑坡稳定性的计算模型研究[J]. 岩土力学, 2012, 33(5): 1485-1490. doi: 10.3969/j.issn.1000-7598.2012.05.033LI Ning, XU Jian-cong, QIN Ya-zhou. Research on calculation model for stability evaluation of rainfall-induced shallow landslides[J]. Rock and Soil Mechanics, 2012, 33(5): 1485-1490. (in Chinese). doi: 10.3969/j.issn.1000-7598.2012.05.033 [19] LORA M, CAMPORESE M, TROCH P A, et al. Rainfall-triggered shallow landslides: infiltration dynamics in a physical hill slope model[J]. Hydrological Processes, 2016, 30(18): 3239-3251. doi: 10.1002/hyp.10829 [20] SCHNELLMANN R, BUSSLINGER M, SCHNEIDER H R, et al. Effect of rising water table in an unsaturated slope[J]. Engineering Geology, 2010, 114(1/2): 71-83. [21] 曾铃, 刘杰, 史振宁. 坡积土边坡裂隙各向异性特征对雨水入渗过程的影响[J]. 交通运输工程学报, 2018, 18(4): 34-43. doi: 10.3969/j.issn.1671-1637.2018.04.004ZENG Ling, LIU Jie, SHI Zhen-ning. Effect of colluvial soil slope fracture's anisotropy characteristics on rainwater infiltration process[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 34-43. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.04.004 [22] 付宏渊, 曾铃, 蒋中明, 等. 降雨条件下公路边坡暂态饱和区发展规律[J]. 中国公路学报, 2012, 25(3): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201203005.htmFU Hong-yuan, ZENG Ling, JIANG Zhong-ming, et al. Developing law of transient saturated areas of highway slope under rainfall conditions[J]. China Journal of Highway and Transport, 2012, 25(3): 59-64. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201203005.htm [23] 倪际梁, 何进, 李洪文, 等. 便携式人工模拟降雨装置的设计与率定[J]. 农业工程学报, 2012, 28(24): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201224016.htmNI Ji-liang, HE Jin, LI Hong-wen, et al. Design and calibration of portable rainfall equipment of artificial simulation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(24): 78-84. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201224016.htm [24] SUN Yi-jie, XU Hong-zhou, GU Peng, et al. Application of FBG sensing technology in stability analysis of geogrid-reinforced slope[J]. Sensors, 2017, 17(3): 597-1-9. doi: 10.3390/s17030597 [25] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity for unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x [26] 郑少河, 姚海林, 葛修润. 裂隙性膨胀土饱和-非饱和渗流分析[J]. 岩土力学, 2007, 28(增1): 281-285. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1059.htmZHENG Shao-he, YAO Hai-lin, GE Xiu-run. Analysis of saturated and unsaturated seepage of cracked expansive soil[J]. Rock and Soil Mechanics, 2007.28(S1): 281-285. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1059.htm [27] FREDLUND D G, XING An-qing, FREDLUND M D, et al. The relationship of the unsaturated soil shear strength to the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1996, 33(3): 440-448. doi: 10.1139/t96-065 [28] SCHILIRÒ L, MONTRASIO L, MUGNOZZA G S. Prediction of shallow landslide occurrence: validation of a physically-based approach through a real case study[J]. Science of the Total Environment, 2016(569/570): 134-144. [29] 郭克伦, 梁国华, 何斌. 基于水文模型的动态临界雨量山洪预警方法及应用[J]. 水电能源科学, 2016, 34(12): 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201612018.htmGUO Ke-lun, LIANG Guo-hua, HE Bin. Dynamic critical precipitation flash flood warning method and its application based on API hydrologic model[J]. Water Resources and Power, 2016, 34(12): 74-77. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201612018.htm [30] 孔令伟, 陈正汉. 特殊土与边坡技术发展综述[J]. 土木工程学报, 2012, 45(5): 141-161. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201205016.htmKONG Ling-wei, CHEN Zheng-han. Advancement in the techniques for special soils and slopes[J]. China Civil Engineering Journal, 2012, 45(5): 141-161. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201205016.htm