留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

降雨入渗下裂土边坡水分运移时空特征与失稳机理

周峙 张家铭 宁伏龙 罗易 王建立

周峙, 张家铭, 宁伏龙, 罗易, 王建立. 降雨入渗下裂土边坡水分运移时空特征与失稳机理[J]. 交通运输工程学报, 2020, 20(4): 107-119. doi: 10.19818/j.cnki.1671-1637.2020.04.008
引用本文: 周峙, 张家铭, 宁伏龙, 罗易, 王建立. 降雨入渗下裂土边坡水分运移时空特征与失稳机理[J]. 交通运输工程学报, 2020, 20(4): 107-119. doi: 10.19818/j.cnki.1671-1637.2020.04.008
ZHOU Zhi, ZHANG Jia-ming, NING Fu-long, LUO Yi, WANG Jian-li. Temporal and spatial characteristics of moisture migration and instability mechanism of cracked soil slope under rainfall infiltration[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 107-119. doi: 10.19818/j.cnki.1671-1637.2020.04.008
Citation: ZHOU Zhi, ZHANG Jia-ming, NING Fu-long, LUO Yi, WANG Jian-li. Temporal and spatial characteristics of moisture migration and instability mechanism of cracked soil slope under rainfall infiltration[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 107-119. doi: 10.19818/j.cnki.1671-1637.2020.04.008

降雨入渗下裂土边坡水分运移时空特征与失稳机理

doi: 10.19818/j.cnki.1671-1637.2020.04.008
基金项目: 

国家自然科学基金项目 41372311

安徽省交通运输科技进步计划项目 2018030

中央高校基本科研业务费专项资金项目 1810491A24

详细信息
    作者简介:

    周峙(1987-), 男, 湖北仙桃人, 中国地质大学工学博士研究生, 从事路基特殊性岩土边坡防治研究

    通讯作者:

    张家铭(1976-), 男, 内蒙古呼和浩特人, 中国地质大学副教授, 工学博士

  • 中图分类号: U416.13

Temporal and spatial characteristics of moisture migration and instability mechanism of cracked soil slope under rainfall infiltration

Funds: 

National Natural Science Foundation of China 41372311

Science and Technology Progress Plan of Anhui Province Transport 2018030

Fundamental Research Funds for the Central Universities 1810491A24

More Information
    Author Bio:

    ZHOU Zhi(1987-), male, doctoral student, 332440995@qq.com

    Corresponding author: ZHANG Jia-ming(1976-), male, associate professor, PhD, zjmnm@163.com
  • 摘要: 为探究降雨入渗下裂土边坡水分运移时空特征与失稳机理, 自主研制了足尺模型试验系统和光纤布拉格光栅(FBG)深部柔性位移系统, 对边坡渐进破坏进行了全过程、多物理量联合监测, 揭示了降雨入渗作用下裂土边坡的渐进变形和破坏演化模式; 基于裂土边坡的渐进破坏模式, 提出了土体饱和比概念, 将裂隙深度范围滑体分为饱和层和非饱和层; 以土体饱和度变化描述了含随机分布裂隙的边坡水分运移规律, 并结合刚体极限平衡法探讨了由裂隙控制的边坡失稳机制。研究结果表明: 对于未形成裂隙的边坡, 连续降小雨时浅层变形受表层基质吸力控制; 裂隙形成后, 雨水沿裂隙快速入渗形成暂态饱和区, 导致基质吸力降幅达82.50%~87.14%, 而由其贡献的抗剪强度迅速损失, 从而形成初期溜滑、片蚀等浅层变形, 降雨停止后坡体仍处于蠕变过程, 坡脚与坡顶位移增幅分别为23.40%和19.39%;蒸发后裂隙规模发展增大了雨水对渗流场的影响范围和边坡破坏规模; 土体经历胀缩、蠕变而变得松散, 裂缝区深部土体体积含水率较初始状态的增幅为205.7%;同一降雨条件下, 初始裂隙深度愈深, 稳定系数愈低, 破坏愈快; 对具有同一裂隙深度的边坡, 其稳定系数随土体饱和比的增加逐渐降低, 土体饱和比增长愈快, 表征边坡内部出现大面积连通型饱和区, 这是裂土边坡出现整体失稳的主要原因。

     

  • 图  1  模型试验系统与模型边坡

    Figure  1.  Model test system and model slope

    图  2  监测元件布设示意(单位: cm)

    Figure  2.  Schematic of monitoring instruments layout (unit: cm)

    图  3  光纤光栅位移计标定结果

    Figure  3.  Calibration results of fiber grating displacement meter

    图  4  裂隙发展与边坡破坏形态

    Figure  4.  Cracking development and slope failure patterns

    图  5  边坡表层体积含水率时程曲线

    Figure  5.  Time-history curves of volumetric moisture content in shallow layers of slope

    图  6  开挖初期边坡中部溜滑典型破坏现象

    Figure  6.  Typical failure phenomenon of slip flow in middle of slope at initial excavation

    图  7  边坡深层体积含水率时程曲线

    Figure  7.  Time-history curves of volumetric moisture content in deep layers of slope

    图  8  边坡干湿循环后坡面出现的网状裂隙

    Figure  8.  Network-pattern cracks in slope surface after wetting-drying cycles

    图  9  坡体不同深度土体孔隙水压力时程曲线

    Figure  9.  Time-history curves of pore water pressure of soil in different depths of slope

    图  10  边坡表层不同位置饱和度与基质吸力变化曲线

    Figure  10.  Change curves of saturation and matrix suction of slope surface at different positions

    图  11  降雨-蒸发期间基质吸力与坡体水平位移变化

    Figure  11.  Variations of matrix suction and horizontal displacement of slope during rainfall and evaporation

    图  12  裂土边坡破坏概念模式

    Figure  12.  Conceptual failure modes of cracked soil slope

    图  13  裂隙优势流作用下裂土边坡稳定性简化计算模型

    Figure  13.  Simplified calculation model for stability of cracked soil slope under action of fissure preferred flow

    图  14  裂土边坡单元体受力模型

    Figure  14.  Cracked soil slope mechanical model of element body

    图  15  不同裂隙深度边坡的破坏时间与稳定性系数曲线

    Figure  15.  Failure time and stability coefficient curves of slope with different crack depths

    图  16  降雨强度对裂土边坡破坏的影响

    Figure  16.  Influence of rainfall intensity on failure of cracked soil slope

    图  17  边坡理论破坏时间与模型试验结果对比

    Figure  17.  Comparison between theoretical failure time and model test result of slope

    表  1  土体物理力学参数

    Table  1.   Physical and mechanical parameters of soil

    土体基本物理性质指标 天然干密度/(g·cm-3) 天然质量含水率/% 最大干密度/(g·cm-3) 最优质量含水率/% 饱和体积含水率/% 液限/% 塑限/%
    实测值 1.59 13.8 1.71 16.5 48.2 35.7 18.4
    土体基本力学性质指标 缩限/% 峰值黏聚力/kPa 内摩擦角/(°) 残余黏聚力/kPa 残余内摩擦角/(°) 自由膨胀率/% 土体相对密度
    实测值 8.2 34.86 16.97 8.2 5.1 42.5 2.71
    下载: 导出CSV

    表  2  模型边坡变形全过程特征

    Table  2.   Characteristics of whole deformation process of slope model

    典型变形时间结束节点/h 降雨阶段 破坏阶段 变形现象描述
    26.45 连续小雨 片蚀 静置期出现的胀缩裂隙较浅, 雨水快速进入裂隙后, 导致裂隙周围土体很快形成暂态饱和, 坡面出现片蚀破坏
    95.20 溜滑 随着裂隙底部土体逐渐饱和, 边坡中部、坡脚表层土体因重度增大发生溜滑
    100.13 蠕滑 坡中部表层以下30 cm处逐渐饱和, 并牵引坡肩顶部沿冲沟出现蠕滑下错, 坡顶下错位移为2.5 cm
    120.00 表层牵引式剧烈滑移 边坡出现深约45 cm的剧烈滑移, 坡中、坡脚为滑流形式, 牵引坡顶坍塌
    126.00 蒸发阶段 坡体蠕变 干燥期间湿润锋逐渐下移, 深部土体逐渐饱和并出现蠕动变形, 并牵引坡顶土体形成张拉裂隙
    196.00 裂隙加深 在胀缩裂隙与张拉裂隙共同作用下, 裂隙宽度和深度增加, 坡脚形成羽毛状次生裂隙, 形成更多渗流通道
    208.53 短时强降雨 后缘张拉裂隙贯通, 坡体整体垮塌 后缘裂隙贯通, 坡顶径流直接进入贯通裂隙, 边坡中上部土体由于饱和重度增加, 随即边坡后缘出现推移式滑移破坏, 形成了整体式坍塌
    240.00 后壁形成陡坡, 在重力作用下继续坍塌 地表径流主要沿冲沟流出坡面, 变形趋于平缓, 滑坡后壁较陡, 坡脚趋于饱和
    下载: 导出CSV

    表  3  滑移主断面各高程处累计水平位移

    Table  3.   Accumulated horizontal displacements at all elevations of sliding main section

    自上而下测绳位置/cm 不同时间(h)的累计水平位移/cm
    208 240
    40 53.2 147.7
    80 60.7 143.2
    120 37.3 141.3
    160 64.8 133.3
    200 48.6 111.6
    240 20.8 28.0
    下载: 导出CSV

    表  4  不同土体的拟合参数

    Table  4.   Fitting parameters for different types of soils

    土体分类 λ A
    软土 0.4 100
    硬黏土 0.4 100
    中砂 0.4 40
    粗砂 0.4 40
    下载: 导出CSV

    表  5  模型计算参数

    Table  5.   Calculation parameters of model

    参数 参数值 数据来源
    K/h-1 6.9×10-7 双环渗透试验
    A 100 硬黏土[18]
    λ 0.4
    β 3.1
    c′/kPa 8.2 室内环剪试验
    φ/(°) 5.1
    α/(°) 45 几何模型参数
    n 0.5 室内试验
    H/m 1.0、1.4、1.8 模型试验
    g 2.71 室内试验
    θs/% 48.2 室内试验
    θr/% 6.0 V-G模型非线性拟合
    h′/(mm·h-1) 45.2、100.6 模型试验
    下载: 导出CSV
  • [1] 黄振鹤, 陈自福. 马巢高速公路边坡坍塌、滑动原因分析及治理[J]. 公路交通科技(应用技术版), 2013(12): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201312009.htm

    HUANG Zhen-he, CHEN Zi-fu. Analysis and control of slope collapse and slide of Machao Expressway[J]. Journal of Highway and Transportation Research and Development (Application Technology Edition), 2013(12): 28-33. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201312009.htm
    [2] 马佳. 裂土优势流与边坡稳定性分析方法[D]. 武汉: 中国科学院武汉岩土力学研究所, 2007.

    MA Jia. Preferential flow and stability analysis method for fissure clay slopes[D]. Wuhan: Wuhan Institute of Rock and Soil Mechanics of Chinese Academy of Sciences, 2007. (in Chinese).
    [3] HE Peng, LI Shu-cai, XIAO Jie, et al. Shallow sliding failure prediction model of expansive soil slope based on gaussian process theory and its engineering application[J]. KSCE Journal of Civil Engineering, 2018, 22(5): 1709-1719. doi: 10.1007/s12205-017-1934-6
    [4] SALCIARINI D, GODT J W, SAVAGE W Z, et al. Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of Central Italy[J]. Landslides, 2006, 3: 181-194. doi: 10.1007/s10346-006-0037-0
    [5] ZHANG Jian, ZHU D, ZHANG Shi-hua. Shallow slope stability evolution during rainwater infiltration considering soil cracking state[J]. Computers and Geotechnics, 2020, 117: 103285. doi: 10.1016/j.compgeo.2019.103285
    [6] BAKER R. Tensile strength, tension cracks, and stability of slopes[J]. Soils and Foundations, 1981, 21(2): 1-17. doi: 10.3208/sandf1972.21.2_1
    [7] LEE F H, LO K W, LEE S L. Tension crack development in soils[J]. Journal of Geotechnical Engineering, 1988, 114(8): 915-929. doi: 10.1061/(ASCE)0733-9410(1988)114:8(915)
    [8] OCAKOGLU F, GOKCEOGLU C, ERCANOGLU M. Dynamics of a complex mass movement triggered by heavy rainfall: a case study from NW Turkey[J]. Geomorphology, 2002, 42(3/4): 329-341.
    [9] DAMIANO E, GRECO R, GUIDA A, et al. Investigation on rainwater infiltration into layered shallow covers in pyroclastic soils and its effect on slope stability[J]. Engineering Geology, 2017, 220: 208218.
    [10] PEI Pei, ZHAO Yan-lin, NI Peng-peng, et al. A protective measure for expansive soil slopes based on moisture content control[J]. Engineering Geology, 2020, 269: 105527-1-13. doi: 10.1016/j.enggeo.2020.105527
    [11] KHAN M S, HOSSAIN S, AHMED A, et al. Investigation of a shallow slope failure on expansive clay in Texas[J]. Engineering Geology, 2016, 219: 118-129.
    [12] HENCHER S R. Preferential flow paths through soil and rock and their association with landslides[J]. Hydrological Processes, 2010, 24(12): 1610-1630. doi: 10.1002/hyp.7721
    [13] 范秋雁, 刘金泉, 杨典森, 等. 不同降雨模式下膨胀岩边坡模型试验研究[J]. 岩土力学, 2016, 37(12): 3401-3409. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612008.htm

    FAN Qiu-yan, LIU Jin-quan, YANG Dian-sen, et al. Model test study of expansive rock slope under different types of precipitation[J]. Rock and Soil Mechanics, 2016, 37(12): 3401-3409. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612008.htm
    [14] 张雨灼, 王柳江, 刘斯宏, 等. 干湿循环下膨胀土边坡响应的模型试验[J]. 郑州大学学报(工学版), 2015, 36(6): 114-118. doi: 10.3969/j.issn.1671-6833.2015.06.023

    ZHANG Yu-zhuo, WANG Liu-jiang, LIU Si-hong, et al. Model test on the performance of the expansive soil slope during wetting-drying cycles[J]. Journal of Zhengzhou University (Engineering Science), 2015, 36(6): 114-118. (in Chinese). doi: 10.3969/j.issn.1671-6833.2015.06.023
    [15] 李卓, 何勇军, 李宏恩, 等. 前期降雨作用下边坡滑坡模型试验[J]. 河海大学学报(自然科学版), 2016, 44(5): 400-405. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201605004.htm

    LI Zhuo, HE Yong-jun, LI Hong-en, et al. Model test on slope landslides under antecedent rainfall[J]. Journal of Hohai University (Natural Sciences), 2016, 44(5): 400-405. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201605004.htm
    [16] 许旭堂, 简文彬, 吴能森, 等. 降雨诱发残积土坡失稳的模型试验[J]. 中国公路学报, 2018, 31(2): 270-279. doi: 10.3969/j.issn.1001-7372.2018.02.029

    XU Xu-tang, JIAN Wen-bin, WU Neng-sen, et al. Model test of rainfall-induced residual soil slope failure[J]. China Journal of Highway and Transport, 2018, 31(2): 270-279. (in Chinese). doi: 10.3969/j.issn.1001-7372.2018.02.029
    [17] 常金源, 包含, 伍法权, 等. 降雨条件下浅层滑坡稳定性探讨[J]. 岩土力学, 2015, 36(4): 995-1001. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201504013.htm

    CHANG Jin-yuan, BAO Han, WU Fa-quan, et al. Discussion on stability of shallow landslide under rainfall[J]. Rock and Soil Mechanics, 2015, 36(4): 995-1001. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201504013.htm
    [18] 李宁, 许建聪, 钦亚洲. 降雨诱发浅层滑坡稳定性的计算模型研究[J]. 岩土力学, 2012, 33(5): 1485-1490. doi: 10.3969/j.issn.1000-7598.2012.05.033

    LI Ning, XU Jian-cong, QIN Ya-zhou. Research on calculation model for stability evaluation of rainfall-induced shallow landslides[J]. Rock and Soil Mechanics, 2012, 33(5): 1485-1490. (in Chinese). doi: 10.3969/j.issn.1000-7598.2012.05.033
    [19] LORA M, CAMPORESE M, TROCH P A, et al. Rainfall-triggered shallow landslides: infiltration dynamics in a physical hill slope model[J]. Hydrological Processes, 2016, 30(18): 3239-3251. doi: 10.1002/hyp.10829
    [20] SCHNELLMANN R, BUSSLINGER M, SCHNEIDER H R, et al. Effect of rising water table in an unsaturated slope[J]. Engineering Geology, 2010, 114(1/2): 71-83.
    [21] 曾铃, 刘杰, 史振宁. 坡积土边坡裂隙各向异性特征对雨水入渗过程的影响[J]. 交通运输工程学报, 2018, 18(4): 34-43. doi: 10.3969/j.issn.1671-1637.2018.04.004

    ZENG Ling, LIU Jie, SHI Zhen-ning. Effect of colluvial soil slope fracture's anisotropy characteristics on rainwater infiltration process[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 34-43. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.04.004
    [22] 付宏渊, 曾铃, 蒋中明, 等. 降雨条件下公路边坡暂态饱和区发展规律[J]. 中国公路学报, 2012, 25(3): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201203005.htm

    FU Hong-yuan, ZENG Ling, JIANG Zhong-ming, et al. Developing law of transient saturated areas of highway slope under rainfall conditions[J]. China Journal of Highway and Transport, 2012, 25(3): 59-64. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201203005.htm
    [23] 倪际梁, 何进, 李洪文, 等. 便携式人工模拟降雨装置的设计与率定[J]. 农业工程学报, 2012, 28(24): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201224016.htm

    NI Ji-liang, HE Jin, LI Hong-wen, et al. Design and calibration of portable rainfall equipment of artificial simulation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(24): 78-84. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201224016.htm
    [24] SUN Yi-jie, XU Hong-zhou, GU Peng, et al. Application of FBG sensing technology in stability analysis of geogrid-reinforced slope[J]. Sensors, 2017, 17(3): 597-1-9. doi: 10.3390/s17030597
    [25] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity for unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [26] 郑少河, 姚海林, 葛修润. 裂隙性膨胀土饱和-非饱和渗流分析[J]. 岩土力学, 2007, 28(增1): 281-285. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1059.htm

    ZHENG Shao-he, YAO Hai-lin, GE Xiu-run. Analysis of saturated and unsaturated seepage of cracked expansive soil[J]. Rock and Soil Mechanics, 2007.28(S1): 281-285. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1059.htm
    [27] FREDLUND D G, XING An-qing, FREDLUND M D, et al. The relationship of the unsaturated soil shear strength to the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1996, 33(3): 440-448. doi: 10.1139/t96-065
    [28] SCHILIRÒ L, MONTRASIO L, MUGNOZZA G S. Prediction of shallow landslide occurrence: validation of a physically-based approach through a real case study[J]. Science of the Total Environment, 2016(569/570): 134-144.
    [29] 郭克伦, 梁国华, 何斌. 基于水文模型的动态临界雨量山洪预警方法及应用[J]. 水电能源科学, 2016, 34(12): 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201612018.htm

    GUO Ke-lun, LIANG Guo-hua, HE Bin. Dynamic critical precipitation flash flood warning method and its application based on API hydrologic model[J]. Water Resources and Power, 2016, 34(12): 74-77. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201612018.htm
    [30] 孔令伟, 陈正汉. 特殊土与边坡技术发展综述[J]. 土木工程学报, 2012, 45(5): 141-161. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201205016.htm

    KONG Ling-wei, CHEN Zheng-han. Advancement in the techniques for special soils and slopes[J]. China Civil Engineering Journal, 2012, 45(5): 141-161. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201205016.htm
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  980
  • HTML全文浏览量:  236
  • PDF下载量:  3157
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-01
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回