留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于热点应力法的矩形钢管混凝土组合桁梁桥节点疲劳评估

姜磊 刘永健 龙辛 王文帅 马印平

姜磊, 刘永健, 龙辛, 王文帅, 马印平. 基于热点应力法的矩形钢管混凝土组合桁梁桥节点疲劳评估[J]. 交通运输工程学报, 2020, 20(6): 104-116. doi: 10.19818/j.cnki.1671-1637.2020.06.009
引用本文: 姜磊, 刘永健, 龙辛, 王文帅, 马印平. 基于热点应力法的矩形钢管混凝土组合桁梁桥节点疲劳评估[J]. 交通运输工程学报, 2020, 20(6): 104-116. doi: 10.19818/j.cnki.1671-1637.2020.06.009
JIANG Lei, LIU Yong-jian, LONG Xin, WANG Wen-shuai, MA Yin-ping. Fatigue assessment of joints in concrete-filled rectangular hollow section composite truss bridges based on hot spot stress method[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 104-116. doi: 10.19818/j.cnki.1671-1637.2020.06.009
Citation: JIANG Lei, LIU Yong-jian, LONG Xin, WANG Wen-shuai, MA Yin-ping. Fatigue assessment of joints in concrete-filled rectangular hollow section composite truss bridges based on hot spot stress method[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 104-116. doi: 10.19818/j.cnki.1671-1637.2020.06.009

基于热点应力法的矩形钢管混凝土组合桁梁桥节点疲劳评估

doi: 10.19818/j.cnki.1671-1637.2020.06.009
基金项目: 

国家自然科学基金项目 52008026

国家自然科学基金项目 51778058

中央高校基本科研业务费专项资金项目 300102219310

详细信息
    作者简介:

    姜磊(1990-), 男, 山东潍坊人, 长安大学讲师, 工学博士, 从事钢桥与组合结构桥梁研究

    通讯作者:

    刘永健(1966-), 男, 江西玉山人, 长安大学教授, 工学博士

  • 中图分类号: U441.5

Fatigue assessment of joints in concrete-filled rectangular hollow section composite truss bridges based on hot spot stress method

Funds: 

National Natural Science Foundation of China 52008026

National Natural Science Foundation of China 51778058

Fundamental Research Funds for the Central Universities 300102219310

More Information
  • 摘要: 为准确评估矩形钢管混凝土组合桁梁桥节点疲劳性能, 引入热点应力法, 可通过平面杆系模型、空间杆系模型和三维实体模型计算节点焊趾处的热点应力幅, 并通过对52个节点疲劳试验数据回归分析, 拟合得到热点应力幅-循环次数曲线; 选取陕西黄延高速一座矩形钢管混凝土组合桁梁桥为典型案例进行节点疲劳评估, 并对原有节点设计方案的构造进行优化。研究结果表明: 相比于墩顶矩形钢管混凝土节点, 跨中矩形钢管节点热点应力幅更大, 为60.1 MPa, 发生在主管表面, 但是小于欧洲规范Eurcode中的容许疲劳强度71 MPa, 满足疲劳设计要求; 对跨中疲劳易损节点进行设计构造优化, 原设计矩形钢管节点变为矩形钢管混凝土节点后, 管内混凝土改变了节点局部刚度, 使相贯线焊趾处应力分布均匀, 支、主管表面热点应力幅平均降低25.1%, 对原设计节点进行焊缝后处理, 可有效消除焊接初始拉应力, 改善节点疲劳性能, 支、主管表面热点应力幅平均降低14.9%;采用空间杆系模型对优化后的跨中矩形钢管混凝土节点进行疲劳评估, 支、主管表面最大热点应力幅分别为58.9、54.1 MPa, 大于三维实体模型计算得到的支管和主管表面最大热点应力幅45.2、47.1 MPa, 空间杆系模型计算结果偏保守, 且无法像三维实体模型一样准确计算不同热点位置的疲劳效应, 也无法准确判断疲劳开裂起始位置。

     

  • 图  1  焊趾附近应力分布

    Figure  1.  Stress distribution in vicinity of weld toe

    图  2  平面杆系模型

    Figure  2.  Planar frame model

    图  3  基于热点应力幅的Sh-N曲线(t=16 mm)

    Figure  3.  Sh-N curve based on hot spot stress range (t=16 mm)

    图  4  矩形钢管混凝土组合桁梁桥

    Figure  4.  Concrete-filled rectangular hollow section composite truss bridge

    图  5  立面布置(单位: cm)

    Figure  5.  Elevation arrangement (unit: cm)

    图  6  典型横断面布置(单位: cm)

    Figure  6.  Typical arrangement of cross section (unit: cm)

    图  7  欧洲规范Eurcode中的疲劳车模型Ⅲ(单位: m)

    Figure  7.  Fatigue load model Ⅲ in Eurcode (unit: m)

    图  8  全桥多尺度模型

    Figure  8.  Multi-scale model of whole bridge

    图  9  矩形钢管混凝土节点三维实体模型

    Figure  9.  Three-dimensional solid model of concrete-filled rectangular hollow section joint

    图  10  焊缝构造

    Figure  10.  Weld profiles

    图  11  最大热点应力幅可能发生位置

    Figure  11.  Possible positions of maximum hot spot stress range

    图  12  跨中节点应力历程

    Figure  12.  Stress history of joint at midspan

    图  13  跨中和墩顶节点热点应力幅分布

    Figure  13.  Hot spot stress range distributions of joints at midspan and on the pier top

    图  14  跨中矩形钢管节点和矩形钢管混凝土节点热点应力幅分布

    Figure  14.  Hot spot stress range distributions of rectangular hollow section joint and concrete-filled rectangular hollow section joint at midspan

    图  15  跨中节点焊缝未处理和焊缝处理后的热点应力幅分布

    Figure  15.  Hot spot stress range distributions of joints at midspan without and with post-weld treatment

    图  16  空间杆系模型

    Figure  16.  Spatial frame model

    图  17  节点内力分布

    Figure  17.  Internal force distribution of joint

    图  18  节点内力基本荷载工况组合

    Figure  18.  Combinations of internal force basic load conditions of joint

    表  1  矩形钢管节点考虑次弯矩的杆件轴力放大系数

    Table  1.   Magnification factors of member axial forces considering secondary bending moments for rectangular hollow section joints

    节点类型 节点形式 弦杆 竖腹杆 斜腹杆
    间隙节点 K型 1.5 - 1.5
    N型 2.2 1.6
    搭接节点 K型 - 1.3
    N型 2.0 1.4
    下载: 导出CSV

    表  2  节点应力集中系数最大值计算公式

    Table  2.   Formulae of maximum stress concentration factors for joints

    位置 应力集中系数公式
    荷载工况1:支管拉压平衡荷载 主管 smax=(0.437+0.121β+0.046β2γ0.626τ0.311(g′)-0.000 05[sin(θ)]0.793
    支管 smax=(0.529+0.646β+0.131β2γ0.509τ0.162(g′)-0.000 05[sin(θ)]0.420
    荷载工况2:主管轴力 主管 smax=(1.170+0.116β-0.341β2γ0.139τ-0.692(g′)-0.006[sin(θ)]0.194
    支管 smax=0
    荷载工况3:主管弯矩 主管 smax=(2.048+0.495β-0.852β2γ0.047τ-0.537(g′)-0.003[sin(θ)]-0.068
    支管 smax=0
    适用范围 0.35≤β≤1.00, 10≤γ≤35, 0.25≤τ≤1.00, 30°≤θ≤60°, 2τg
    下载: 导出CSV
  • [1] 刘彬, 刘永健, 周绪红, 等. 中等跨径装配式矩形钢管混凝土组合桁梁桥设计[J]. 交通运输工程学报, 2017, 17(4): 20-31. doi: 10.3969/j.issn.1671-1637.2017.04.003

    LIU Bin, LIU Yong-jian, ZHOU Xu-hong, et al. Design of mid-span fabricated RCFST composite truss bridge[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 20-31. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.04.003
    [2] 刘永健, 马印平, 田智娟, 等. 矩形钢管混凝土组合桁梁连续刚构桥实桥试验[J]. 中国公路学报, 2018, 31(5): 53-62. doi: 10.3969/j.issn.1001-7372.2018.05.007

    LIU Yong-jian, MA Yin-ping, TIAN Zhi-juan, et al. Field test of rectangular concrete filled steel tubular composite truss bridge with continuous rigid system[J]. China Journal of Highway and Transport, 2018, 31(5): 53-62. (in Chinese). doi: 10.3969/j.issn.1001-7372.2018.05.007
    [3] 高诣民, 刘永健, 周绪红, 等. 高性能钢管混凝土组合桁梁桥[J]. 中国公路学报, 2018, 31(12): 174-187. doi: 10.3969/j.issn.1001-7372.2018.12.017

    GAO Yi-min, LIU Yong-jian, ZHOU Xu-hong, et al. High-performance CFST composite truss bridge[J]. China Journal of Highway and Transport, 2018, 31(12): 174-187. (in Chinese). doi: 10.3969/j.issn.1001-7372.2018.12.017
    [4] TIAN Zhi-juan, LIU Yong-jian, JIANG Lei, et al. A review on application of composite truss bridges composed of hollow structural section members[J]. Journal of Traffic and Transportation Engineering (English Edition), 2019, 6(1): 94-108. doi: 10.1016/j.jtte.2018.12.001
    [5] 周绪红, 刘永健, 姜磊, 等. PBL加劲型矩形钢管混凝土力学性能研究综述[J]. 中国公路学报, 2017, 30(11): 45-62. doi: 10.3969/j.issn.1001-7372.2017.11.006

    ZHOU Xu-hong, LIU Yong-jian, JIANG Lei, et al. Review on mechanical behavior research of concrete filled rectangular hollow section tube stiffened with PBL[J]. China Journal of Highway and Transport, 2017, 30(11): 45-62. (in Chinese). doi: 10.3969/j.issn.1001-7372.2017.11.006
    [6] 周建庭, 郑丹. 保障我国桥梁安全的战略思考[J]. 中国工程科学, 2017, 19(6): 27-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201706006.htm

    ZHOU Jian-ting, ZHENG Dan. Safety of highway bridges in China[J]. Strategic Study of CAE, 2017, 19(6): 27-37. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201706006.htm
    [7] 姜磊, 刘永健, 王康宁. 焊接管节点结构形式发展及疲劳性能对比[J]. 建筑结构学报, 2019, 40(3): 180-191. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201903019.htm

    JIANG Lei, LIU Yong-jian, WANG Kang-ning. Development of welded tubular joints and comparison of fatigue behaviour[J]. Journal of Building Structures, 2019, 40(3): 180-191. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201903019.htm
    [8] 刘永健, 姜磊, 王康宁. 焊接管节点疲劳研究综述[J]. 建筑科学与工程学报, 2017, 34(5): 1-20. doi: 10.3969/j.issn.1673-2049.2017.05.002

    LIU Yong-jian, JIANG Lei, WANG Kang-ning. Review of fatigue behavior in welded tubular joints[J]. Journal of Architecture and Civil Engineering, 2017, 34(5): 1-20. (in Chinese). doi: 10.3969/j.issn.1673-2049.2017.05.002
    [9] LIU Jiang, LIU Yong-jian, ZHANG Chen-yu, et al. Temperature action and effect of concrete-filled steel tubular bridges: a review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7(2): 174-191. doi: 10.1016/j.jtte.2020.03.001
    [10] WEI Xing, WEN Zong-yi, XIAO Lin, et al. Review of fatigue assessment approaches for tubular joints in CFST trusses[J]. International Journal of Fatigue, 2018, 113: 43-53. doi: 10.1016/j.ijfatigue.2018.04.007
    [11] VAN WINGERDE A M, PACKER J A, WARDENIER J. Criteria for the fatigue assessment of hollow structural section connections[J]. Journal of Constructional Steel Research, 1995, 35(1): 71-115. doi: 10.1016/0143-974X(94)00030-I
    [12] DEHGHANI A, ASLANI F. Fatigue performance and design of concrete-filled steel tubular joints: a critical review[J]. Journal of Constructional Steel Research, 2019, 162: 105749-1-17.
    [13] LAN X Y, CHAN T M. Recent research advances of high strength steel welded hollow section joints[J]. Structures, 2019, 17: 58-65. doi: 10.1016/j.istruc.2018.11.015
    [14] ZHAO X L, TONG L W. New development in steel tubular joints[J]. Advances in Structural Engineering, 2011, 14(4): 699-715. doi: 10.1260/1369-4332.14.4.699
    [15] 姜磊. 矩形钢管混凝土梁桥节点疲劳性能和计算方法研究[D]. 西安: 长安大学, 2019.

    JIANG Lei. Research on fatigue behaviour and calculation method of joints in concrete-filled rectangular hollow section truss bridge[D]. Xi'an: Chang'an University, 2019. (in Chinese).
    [16] JIANG Lei, LIU Yong-jian, FAM A. Stress concentration factors in joints of square hollow section (SHS) brace and concrete-filled SHS chord under axial tension in brace[J]. Thin-Walled Structures, 2018, 132: 79-92. doi: 10.1016/j.tws.2018.08.014
    [17] JIANG Lei, LIU Yong-jian, FAM A. Stress concentration factors in concrete-filled square hollow section joints with perfobond ribs[J]. Engineering Structures, 2019, 181: 165-180. doi: 10.1016/j.engstruct.2018.12.016
    [18] JIANG Lei, LIU Yong-jian, FAM A, et al. Fatigue behaviour of non-integral Y-joint of concrete-filled rectangular hollow section continuous chord stiffened with perfobond ribs[J]. Engineering Structures, 2019, 191: 611-624. doi: 10.1016/j.engstruct.2019.04.089
    [19] JIANG Lei, LIU Yong-jian, FAM A, et al. Stress concentration factor parametric formulae for concrete-filled rectangular hollow section K-joints with perfobond ribs[J]. Journal of Constructional Steel Research, 2019, 160: 579-597. doi: 10.1016/j.jcsr.2019.06.005
    [20] JIANG Lei, LIU Yong-jian, FAM A, et al. Fatigue behavior of integral built-up box Y-joints between concrete-filled chords with perfobond ribs and hollow braces[J]. Journal of Structural Engineering, 2020, 146(3): 04019218-1-15.
    [21] 刘永健, 姜磊, 熊治华, 等. PBL加劲型矩形钢管混凝土受拉节点热点应力集中系数计算方法[J]. 交通运输工程学报, 2017, 17(5): 1-15. doi: 10.3969/j.issn.1671-1637.2017.05.001

    LIU Yong-jian, JIANG Lei, XIONG Zhi-hua, et al. Hot spot SCF computation method of concrete-filled and PBL-stiffened rectangular hollow section joint subjected to axial tensions[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 1-15. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.05.001
    [22] MASHIRI F R, ZHAO Xiao-ling. Square hollow section (SHS) T-joints with concrete-filled chords subjected to in-plane fatigue loading in the brace[J]. Thin-Walled Structures, 2010, 48(2): 150-158. doi: 10.1016/j.tws.2009.07.010
    [23] MASHIRI F R, ZHAO Xiao-ling, GRUNDY P. Fatigue tests and design of welded T connections in thin cold-formed square hollow sections under in-plane bending[J]. Journal of Structural Engineering, 2002, 128: 1413-1422. doi: 10.1061/(ASCE)0733-9445(2002)128:11(1413)
    [24] MATTI F N, MASHIRI F R. Design formulae for predicting the stress concentration factors of concrete-filled T-joints under out-of-plane bending[J]. Structures, 2020, 28: 2073-2095. doi: 10.1016/j.istruc.2020.10.032
    [25] MATTI F N, MASHIRI F R. Experimental and numerical studies on SCFs of SHS T-joints subjected to static out-of-plane bending[J]. Thin-Walled Structures, 2020, 146: 106453-1-18.
    [26] CHIEW S P, ZHAO M S, LEE C K. Fatigue performance of high strength steel built-up box T-joints[J]. Journal of Constructional Steel Research, 2015, 106: 296-310. doi: 10.1016/j.jcsr.2014.12.018
    [27] JIANG J, LEE C K, CHIEW S P. Residual stress and stress concentration effect of high strength steel built-up box T-joints[J]. Journal of Constructional Steel Research, 2015, 105: 164-173. doi: 10.1016/j.jcsr.2014.11.008
    [28] MASHAYEKHI M, SANTINI-BELL E. Fatigue assessment of a complex welded steel bridge connection utilizing a three-dimensional multi-scale finite element model and hotspot stress method[J]. Engineering Structures, 2020, 214: 110624-1-12.
    [29] LIU Z, CORREIA J, CARVALHO H, et al. Global-local fatigue assessment of an ancient riveted metallic bridge based on submodelling of the critical detail[J]. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42: 546-560. doi: 10.1111/ffe.12930
    [30] COSTA BORGES L A. Size effects in the fatigue behaviour of tubular bridge joints[D]. Coimbra: University of Coimbra, 2008.
    [31] VAN WINGERDE A M. The fatigue behaviour of T- and X-joint made of square hollow sections[J]. Heron, 1992, 37(2): 1-182.
    [32] WANG Ke, TONG Le-wei, ZHU Jun, et al. Fatigue behavior of welded T-joints with a CHS brace and CFCHS chord under axial loading in the brace[J]. Journal of Bridge Engineering, 2013, 18(2): 142-152. doi: 10.1061/(ASCE)BE.1943-5592.0000331
    [33] TONG L W, XU G W, YANG D L, et al. Fatigue behavior and design of welded tubular T-joints with CHS brace and concrete-filled chord[J]. Thin-Walled Structures, 2017, 120: 180-190. doi: 10.1016/j.tws.2017.08.024
    [34] 马印平, 刘永健, 刘江. 基于响应面法的钢管混凝土组合桁梁桥多尺度有限元模型修正[J]. 中国公路学报, 2019, 32(11): 51-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201911005.htm

    MA Yin-ping, LIU Yong-jian, LIU Jiang. Multi-scale finite element model updating of CFST composite truss bridge based on response surface method[J]. China Journal of Highway and Transport, 2019, 32(11): 51-61. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201911005.htm
    [35] 刘永健, 龙辛, 姜磊, 等. 基于热点应力法的钢管混凝土焊接节点疲劳构造细节比较[J]. 建筑科学与工程学报, 2020, 37(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202005002.htm

    LIU Yong-jian, LONG Xin, JIANG Lei, et al. Comparison on fatigue structural details of CFST welded joints based on hot spot stress method[J]. Journal of Architecture and Civil Engineering, 2020, 37(5): 1-12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202005002.htm
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  847
  • HTML全文浏览量:  261
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回