[1] |
朱冰, 张培兴, 赵健, 等. 基于场景的自动驾驶汽车虚拟测试研究进展[J]. 中国公路学报, 2019, 32(6): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906002.htmZHU Bing, ZHANG Pei-xing, ZHAO Jian, et al. Review of scenario-based virtual validation methods for automated vehicles[J]. China Journal of Highway and Transport, 2019, 32(6): 1-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906002.htm
|
[2] |
PEREIRA J, PREMEBIDA C, ASVADI A, et al. Test and evaluation of connected and autonomous vehicles in real-world scenarios[C]//IEEE. 2019 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2019: 14-19.
|
[3] |
STRAUB J. Automated testing of a self-driving vehicle system[C]//IEEE. 2017 IEEE AUTOTESTCON Conference. New York: IEEE, 2017: 1-6.
|
[4] |
TANG Li, SHI Yun-peng, HE Qing, et al. Performance test of autonomous vehicle lidar sensors under different weather conditions[J]. Transportation Research Record, 2020, 2674(1): 319-329. doi: 10.1177/0361198120901681
|
[5] |
ZANG Shi-zhe, DING Ming, SMITH D, et al. The impact of adverse weather conditions on autonomous vehicles: how rain, snow, fog, and hail affect the performance of a self-driving car[J]. IEEE Vehicular Technology Magazine, 2019, 14(2): 103-111. doi: 10.1109/MVT.2019.2892497
|
[6] |
余卓平, 邢星宇, 陈君毅. 自动驾驶汽车测试技术与应用进展[J]. 同济大学学报(自然科学版), 2019, 47(4): 540-547. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201904013.htmYU Zhuo-ping, XING Xing-yu, CHEN Jun-yi. Review on automated vehicle testing technology and its application[J]. Journal of Tongji University (Natural Science), 2019, 47(4): 540-547. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201904013.htm
|
[7] |
冯洋, 夏志龙, 郭安, 等. 自动驾驶软件测试技术研究综述[J]. 中国图象图形学报, 2021, 26(1): 13-27.FENG Yang, XIA Zhi-long, GUO An, et al. Survey of testing techniques of autonomous driving software[J]. Journal of Image and Graphics, 2021, 26(1): 13-27. (in Chinese)
|
[8] |
SHAO Yun-li, ZULKEFLI M A M, SUN Zong-xuan, et al. Evaluating connected and autonomous vehicles using a hardware-in-the-loop testbed and a living lab[J]. Transportation Research Part C: Emerging Technologies, 2019, 102: 121-135. doi: 10.1016/j.trc.2019.03.010
|
[9] |
CHEN Yu, CHEN Shi-tao, XIAO Tong, et al. Mixed test environment-based vehicle-in-the-loop validation—a new testing approach for autonomous vehicles[C]//IEEE. 2020 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2020: 1283-1289.
|
[10] |
SZALAY Z, NYERGES Á, HAMAR Z, et al. Technical specification methodology for an automotive proving ground dedicated to connected and automated vehicles[J]. Periodica Polytechnica Transportation Engineering, 2017, 45(3): 168-174. doi: 10.3311/PPtr.10708
|
[11] |
LI Li, WANG Xiao, WANG Kun-feng, et al. Parallel testing of vehicle intelligence via virtual-real interaction[J]. Science Robotics, 2019, 4(28): eaaw4106. doi: 10.1126/scirobotics.aaw4106
|
[12] |
FAYAZI S A, VAHIDI A, LUCKOW A. A vehicle-in-the-loop (VIL) verification of an all-autonomous intersection control scheme[J]. Transportation Research Part C: Emerging Technologies, 2019, 107: 193-210. doi: 10.1016/j.trc.2019.07.027
|
[13] |
FENG Yi-heng, YU Chun-hui, XU Shao-bing, et al. An augmented reality environment for connected and automated vehicle testing and evaluation[C]//IEEE. 2018 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2018: 1549-1554.
|
[14] |
王润民, 张心睿, 王由道, 等. 自动驾驶封闭测试场地建设技术研究与实践[J]. 汽车实用技术, 2020(4): 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SXQC202004012.htmWANG Run-min, ZHANG Xin-rui, WANG You-dao, et al. Research and practice on construction technology of closed test field autonomous driving[J]. Automobile Applied Technology, 2020(4): 33-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXQC202004012.htm
|
[15] |
杨林瑶, 陈思远, 王晓, 等. 数字孪生与平行系统: 发展现状、对比及展望[J]. 自动化学报, 2019, 45(11): 2001-2031. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201911001.htmYANG Lin-yao, CHEN Si-yuan, WANG Xiao, et al. Digital twins and parallel systems: state of the art, comparisons and prospect[J]. Acta Automatica Sinica, 2019, 45(11): 2001-2031. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201911001.htm
|
[16] |
QUEIROZ R, BERGER T, CZARNECKI K. GeoScenario: an open DSL for autonomous driving scenario representation[C]//IEEE. 2019 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2019: 287-294.
|
[17] |
HUANG Z, ARIEF M, LAM H, et al. Evaluation uncertainty in data-driven self-driving testing[C]//IEEE. 2019 IEEE Intelligent Transportation Systems Conference. New York: IEEE, 2019: 1902-1907.
|
[18] |
KALRA N, PADDOCK S M. Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability?[J]. Transportation Research Part A: Policy and Practice, 2016, 94: 182-193. doi: 10.1016/j.tra.2016.09.010
|
[19] |
FENG S, YAN X, SUN H, et al. Intelligent driving intelligence test for autonomous vehicles with naturalistic and adversarial environment[J]. Nature Communications, 2021, 12(1): 1-14. doi: 10.1038/s41467-020-20314-w
|
[20] |
CHANCE G, GHOBRIAL A, LEMAIGNAN S, et al. An agency-directed approach to test generation for simulation-based autonomous vehicle verification[C]//IEEE. 2020 IEEE International Conference on Artificial Intelligence Testing. New York: IEEE, 2020: 31-38.
|
[21] |
MENZEL T, BAGSCHIK G, MAURER M. Scenarios for development, test and validation of automated vehicles[C]//IEEE. 2018 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2018: 1821-1827.
|
[22] |
BATSCH F, KANARACHOS S, CHEAH M, et al. A taxonomy of validation strategies to ensure the safe operation of highly automated vehicles[J]. Journal of Intelligent Transportation Systems, 2020(6): 1-20. doi: 10.1080/15472450.2020.1738231
|
[23] |
周文帅, 朱宇, 赵祥模, 等. 面向高速公路车辆切入场景的自动驾驶测试用例生成方法[J]. 汽车技术, 2021(1): 11-18.ZHOU Wen-shuai, ZHU Yu, ZHAO Xiang-mo, et al. Vehicle cut-in test case generation methods for testing of autonomous driving on highway[J]. Automobile Technology, 2021(1): 11-18. (in Chinese)
|
[24] |
HUANG Z, LAM H, LEBLANC D J, et al. Accelerated evaluation of automated vehicles using piecewise mixture models[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(9): 2845-2855. http://ieeexplore.ieee.org/document/8116682
|
[25] |
HUANG Z, LAM H, ZHAO D. An accelerated testing approach for automated vehicles with background traffic described by joint distributions[C]//IEEE. 20th International Conference on Intelligent Transportation Systems. New York: IEEE, 2017: 933-938.
|
[26] |
余荣杰, 田野, 孙剑. 高等级自动驾驶汽车虚拟测试: 研究进展与前沿[J]. 中国公路学报, 2020, 33(11): 125-138. doi: 10.3969/j.issn.1001-7372.2020.11.012YU Rong-jie, TIAN Ye, SUN Jian. Highly automated vehicle virtual testing: a review of recent developments and research frontiers[J]. China Journal of Highway and Transport, 2020, 33(11): 125-138. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.11.012
|
[27] |
RIEDMAIER S, PONN T, LUDWIG D, et al. Survey on scenario-based safety assessment of automated vehicles[J]. IEEE Access, 2020, 8: 87456-87477. doi: 10.1109/ACCESS.2020.2993730
|
[28] |
GO B K, CARROLL B J M. The blind men and the elephant: views of scenario-based system design[J]. Interactions, 2004, 11(6): 44-53. doi: 10.1145/1029036.1029037
|
[29] |
LI Li, HUANG Wu-ling, LIU Yue-hu, et al. Intelligence testing for autonomous vehicles: a new approach[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(2): 158-166. doi: 10.1109/TIV.2016.2608003
|
[30] |
ULBRICH S, MENZEL T, RESCHKA A, et al. Defining and substantiating the terms scene, situation, and scenario for automated driving[C]//IEEE. 18th IEEE International Conference on Intelligent Transportation Systems. New York: IEEE, 2015: 982-988.
|
[31] |
ELROFAI H, PAARDEKOOPER J, GELDER E, et al. Scenario-based safety validation of connected and automated driving[R]. Helmond: TNO, 2018.
|
[32] |
ROCKLAGE E, KRAFT H, KARATAS A, et al. Automated scenario generation for regression testing of autonomous vehicles[C]//IEEE. 20th IEEE International Conference on Intelligent Transportation Systems. New York: IEEE, 2017: 476-483.
|
[33] |
MENZEL T, BAGSCHIK G, MAURER M. Scenarios for development, test and validation of automated vehicles[C]// IEEE. 2018 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2018: 1821-1827.
|
[34] |
BAGSCHIK G, MENZEL T, MAURER M. Ontology based scene creation for the development of automated vehicles[C]//IEEE. 2018 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2018: 1813-1820.
|
[35] |
SCHIEMENTZ M. Test case variation and execution[R]. Berlin: Research Project PEGASUS, 2019.
|
[36] |
THORN E, KIMMEL S, CHAKA M. A framework for automated driving system testable cases and scenarios[R]. Washington DC: NHTSA, 2018.
|
[37] |
KANG Y, YIN H, BERGER C. Test your self-driving algorithm: an overview of publicly available driving datasets and virtual testing environments[J]. IEEE Transactions on Intelligent Vehicles, 2019, 4(2): 171-185. doi: 10.1109/TIV.2018.2886678
|
[38] |
李一兵, 孙岳霆, 徐成亮. 基于交通事故数据的汽车安全技术发展趋势分析[J]. 汽车安全与节能学报, 2016, 7(3): 241-253. https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN201603001.htmLI Yi-bing, SUN Yue-ting, XU Cheng-liang. Developing trends of automotive safety technology: an analysis based on traffic accident data[J]. Journal of Automotive Safety and Energy, 2016, 7(3): 241-253. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN201603001.htm
|
[39] |
韩大双, 马志雄, 朱西产, 等. 用于自动驾驶汽车的汽车-骑车人事故场景分析[J]. 汽车安全与节能学报, 2020, 11(2): 220-226. doi: 10.3969/j.issn.1674-8484.2020.02.009HAN Da-shuang, MA Zhi-xiong, ZHU Xi-chan, et al. Car-cyclist accident scene analysis for autopilot vehicles[J]. Journal of Automotive Safety and Energy, 2020, 11(2): 220-226. (in Chinese) doi: 10.3969/j.issn.1674-8484.2020.02.009
|
[40] |
OTTE D, FACIUS T. Accident typology comparisons between pedelecs and conventional bicycles[J]. Journal of Transportation Safety and Security, 2020, 12(1): 116-135. doi: 10.1080/19439962.2019.1662530
|
[41] |
SCANLON J M, SHERONY R, GABLER H C. Earliest sensor detection opportunity for left turn across path opposite direction crashes[J]. IEEE Transactions on Intelligent Vehicles, 2017, 2(1): 62-70. doi: 10.1109/TIV.2017.2708611
|
[42] |
胡林, 方胜勇, 黄晶, 等. 基于逻辑回归的二轮车-汽车碰撞事故深度分析[J]. 汽车工程, 2016, 38(11): 1288-1293. doi: 10.3969/j.issn.1000-680X.2016.11.002HU Lin, FANG Sheng-yong, HUANG Jing, et al. In-depth analysis on cycle-vehicle crash accident based on logistic regression[J]. Automotive Engineering, 2016, 38(11): 1288-1293. (in Chinese) doi: 10.3969/j.issn.1000-680X.2016.11.002
|
[43] |
HITOSUGI M, TOKUDOME S. Injury severity of occupants in lateral collisions in standard and small vehicles: analysis of ITARDA's in-depth investigation data[J]. International Journal of Crashworthiness, 2011, 16(6): 657-663. doi: 10.1080/13588265.2011.616116
|
[44] |
VIVO G, DALMASSO P, VERNACCHIA F. The European integrated project SAFESPOT——how ADAS applications co-operate for the driving safety[C]//IEEE. 2007 IEEE Intelligent Transportation Systems Conference. New York: IEEE, 2007: 624-629.
|
[45] |
DIOS E, FERRER A, HILL J, et al. Towards a global and harmonized database for in-depth accident investigation in Europe: the DaCoTa project[J]. Wireless Personal Communications, 2013, 68(4): 1633-1671. doi: 10.1007/s11277-012-0543-4
|
[46] |
曹毅, 周华, 肖凌云, 等. 基于NAIS数据库中视频信息的人-车碰撞事故特征分析[J]. 汽车安全与节能学报, 2020, 11(1): 44-52. doi: 10.3969/j.issn.1674-8484.2020.01.004CAO Yi, ZHOU Hua, XIAO Ling-yun, et al. Analysis of pedestrian-vehicle collision accident characteristics based on the video information from NAIS database[J]. Journal of Automotive Safety and Energy, 2020, 11(1): 44-52. (in Chinese) doi: 10.3969/j.issn.1674-8484.2020.01.004
|
[47] |
International Transport Forum. Road Safety Annual Report 2018[R]. Paris: OECD Publishing, 2018.
|
[48] |
LENARD J, BADEA-ROMERO A, DANTON R. Typical pedestrian accident scenarios for the development of autonomous emergency braking test protocols[J]. Accident Analysis and Prevention, 2014, 73: 73-80. doi: 10.1016/j.aap.2014.08.012
|
[49] |
NITSCHE P, THOMAS P, STUETZ R, et al. Pre-crash scenarios at road junctions: a clustering method for car crash data[J]. Accident Analysis and Prevention, 2017, 107: 137-151. doi: 10.1016/j.aap.2017.07.011
|
[50] |
SUI Bo, ZHOU Sheng-qi, ZHAO Xiao-hua, et al. An overview of car-to-two-wheeler accidents in China: guidance for AEB assessment[C]//NHTSA. The 25th International Technical Conference on the Enhanced Safety of Vehicles. Washington DC: NHTSA, 2017: 1-12.
|
[51] |
SCANLON J M, SHERONY R, GABLER H C. Earliest sensor detection opportunity for left turn across path opposite direction crashes[J]. IEEE Transactions on Intelligent Vehicles, 2017, 2(1): 62-70. doi: 10.1109/TIV.2017.2708611
|
[52] |
SANDER U, LUBBE N. The potential of clustering methods to define intersection test scenarios: assessing real-life performance of AEB[J]. Accident Analysis and Prevention, 2018, 113: 1-11. doi: 10.1016/j.aap.2018.01.010
|
[53] |
胡林, 易平, 黄晶, 等. 基于真实事故案例的自动紧急制动系统两轮车测试场景研究[J]. 汽车工程, 2018, 40(12): 1435-1446, 1453. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201812010.htmHU Lin, YI Ping, HUANG Jing, et al. A research on test scenes of two-wheeled vehicles for automatic emergency braking system based on real accident cases[J]. Automotive Engineering, 2018, 40(12): 1435-1446, 1453. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201812010.htm
|
[54] |
徐向阳, 周兆辉, 胡文浩, 等. 基于事故数据挖掘的AEB路口测试场景[J]. 北京航空航天大学学报, 2020, 46(10): 1817-1825. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202010001.htmXU Xiang-yang, ZHOU Zhao-hui, HU Wen-hao, et al. Intersection test scenarios for AEB based on accident data mining[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1817-1825. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK202010001.htm
|
[55] |
ZHANG Lan-fang, CHEN Chen, ZHANG Jia-yan, et al. Modeling lane-changing behavior in freeway off-ramp areas from the shanghai naturalistic driving study[J]. Journal of Advanced Transportation, 2018, 2018: 1-10. http://www.researchgate.net/publication/322504608_Modeling_Lane-Changing_Behavior_in_Freeway_Off-Ramp_Areas_from_the_Shanghai_Naturalistic_Driving_Study
|
[56] |
DINGUS T, KLAUER S G, NEALE V L, et al. The 100-car naturalistic driving study, phase Ⅱ——results of the 100-car field experiment[R]. Washington DC: NHTSA, 2006.
|
[57] |
LEBLANC D, BEZZINA D, TIERNAN T, et al. Functional requirements for integrated vehicle-based safety systems (IVBSS)—light vehicle platform[R]. Ann Arbor: University of Michigan Transportation Research Institute, 2008.
|
[58] |
RUSSELL S M, BLANCO M, ATWOOD J, et al. Naturalistic study of level 2 driving automation functions[R]. Washington DC: NHTSA, 2018.
|
[59] |
HUANG X, ZHAO D, PENG H. Empirical study of DSRC performance based on safety pilot model deployment data[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(10): 2619-2628. doi: 10.1109/TITS.2017.2649538
|
[60] |
BÄRGMAN J, SVANBERG E. Sweden-Michigan naturalistic field operational test (SeMiFOT) phase 1: WP 3 data management, final report[R]. Göteborg: Chalmers University of Technology, 2010.
|
[61] |
WILMINK I, BENMIMOUN M, NOORT M V, et al. euroFOT: large scale field operational test-impact assessment[C]//ITS America. 16th ITS World Congress and Exhibition on Intelligent Transport Systems and Services. Washington DC: ITS America, 2009: 1-3.
|
[62] |
BARNARD Y, UTESCH F, NES N V, et al. The study design of UDRIVE: the naturalistic driving study across Europe for cars, trucks and scooters[J]. European Transport Research Review, 2016, 8(2): 1-10. doi: 10.1007/s12544-016-0202-z/figures/4
|
[63] |
GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. International Journal of Robotics Research, 2013, 32(11): 1229-1235. http://imaiai.oxfordjournals.org/external-ref?access_num=10.1177/0278364913491297&link_type=DOI
|
[64] |
朱西产, 魏昊舟, 马志雄. 基于自然驾驶数据的跟车场景潜在风险评估[J]. 中国公路学报, 2020, 33(4): 169-181. doi: 10.3969/j.issn.1001-7372.2020.04.017ZHU Xi-chan, WEI Hao-zhou, MA Zhi-xiong. Assessment of the potential risk in car-following scenario based on naturalistic driving data[J]. China Journal of Highway and Transport, 2020, 33(4): 169-181. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.04.017
|
[65] |
王雪松, 杨敏明. 基于自然驾驶数据的变道切入行为分析[J]. 同济大学学报(自然科学版), 2018, 46(8): 1057-1063. doi: 10.11908/j.issn.0253-374x.2018.08.008WANG Xue-song, YANG Min-ming. Cut-in behavior analyses based on naturalistic driving data[J]. Journal of Tongji University (Natural Science), 2018, 46(8): 1057-1063. (in Chinese) doi: 10.11908/j.issn.0253-374x.2018.08.008
|
[66] |
刘生. 智能网联汽车驾驶场景数据采集的研究及应用[J]. 汽车纵横, 2018(8): 74-75. doi: 10.3969/j.issn.2095-1892.2018.08.029LIU Sheng. Research and application of data collection of intelligent networked vehicle driving scene[J]. Auto Review, 2018(8): 74-75. (in Chinese) doi: 10.3969/j.issn.2095-1892.2018.08.029
|
[67] |
王雪松, 孙平, 张晓春, 等. 基于自然驾驶数据的高速公路跟驰模型参数标定[J]. 中国公路学报, 2020, 33(5): 132-142. doi: 10.3969/j.issn.1001-7372.2020.05.012WANG Xue-song, SUN Ping, ZHANG Xiao-chun, et al. Calibrating car-following models on freeway based on naturalistic driving data[J]. China Journal of Highway and Transport, 2020, 33(5): 132-142. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.05.012
|
[68] |
YANG Min-ming, WANG Xue-song, MOHAMMED Q. Examining lane change gap acceptance, duration and impact using naturalistic driving data[J]. Transportation Research Part C: Emerging Technologies, 2019, 104: 317-331. doi: 10.1016/j.trc.2019.05.024
|
[69] |
王雪松, 朱美新, 邢祎伦. 基于自然驾驶数据的避撞预警对跟车行为影响[J]. 同济大学学报(自然科学版), 2016, 44(7): 1045-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201607010.htmWANG Xue-song, ZHU Mei-xin, XING Yi-lun. Impact of collision warning system on car-following behavior based on naturalistic driving data[J]. Journal of Tongji University (Natural Science), 2016, 44(7): 1045-1051. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201607010.htm
|
[70] |
王雪松, 朱美新. 基于自然驾驶数据的中国驾驶人城市快速路跟驰模型标定与验证[J]. 中国公路学报, 2018, 31(9): 129-137. doi: 10.3969/j.issn.1001-7372.2018.09.015WANG Xue-song, ZHU Mei-xin. Calibrating and validating car-following models on urban expressways for Chinese drivers using naturalistic driving data[J]. China Journal of Highway and Transport, 2018, 31(9): 129-137. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.09.015
|
[71] |
吴斌, 朱西产, 沈剑平, 等. 基于自然驾驶数据的危险评估算法研究[J]. 汽车工程, 2017, 39(8): 907-914. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201708009.htmWU Bin, ZHU Xi-chan, SHEN Jian-ping, et al. A study on risk assessment algorithm based on natural driving data[J]. Automotive Engineering, 2017, 39(8): 907-914. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201708009.htm
|
[72] |
吴斌, 朱西产, 沈剑平, 等. 基于自然驾驶研究的直行追尾危险场景诱导因素分析[J]. 同济大学学报(自然科学版), 2018, 46(9): 1253-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201809013.htmWU Bin, ZHU Xi-chan, SHEN Jian-ping, et al. Analysis of causation of rear-end incidents based on naturalistic driving study[J]. Journal of Tongji University (Natural Science), 2018, 46(9): 1253-1260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201809013.htm
|
[73] |
吴斌, 朱西产, 沈剑平. 基于自然驾驶数据的驾驶员紧急制动行为特征[J]. 同济大学学报(自然科学版), 2018, 46(11): 1514-1519, 1535. doi: 10.11908/j.issn.0253-374x.2018.11.007WU Bin, ZHU Xi-chan, SHEN Jian-ping. Driver emergency braking behavior based on naturalistic driving data[J]. Journal of Tongji University (Natural Science), 2018, 46(11): 1514-1519, 1535. (in Chinese) doi: 10.11908/j.issn.0253-374x.2018.11.007
|
[74] |
吴斌, 朱西产, 沈剑平. 基于自然驾驶数据的驾驶员紧急转向变道模型[J]. 同济大学学报(自然科学版), 2019, 47(11): 1618-1625. doi: 10.11908/j.issn.0253-374x.2019.11.011WU Bin, ZHU Xi-chan, SHEN Jian-ping. Analysis of driver emergency steering lane changing behavior model based on naturalistic driving data[J]. Journal of Tongji University (Natural Science), 2019, 47(11): 1618-1625. (in Chinese) doi: 10.11908/j.issn.0253-374x.2019.11.011
|
[75] |
ZHAO D, LAM H, PENG H, et al. Accelerated evaluation of automated vehicles safety in lane-change scenarios based on importance sampling techniques[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(3): 595-607. doi: 10.1109/TITS.2016.2582208
|
[76] |
HUANG Z, ZHAO D, LAM H, et al. Evaluation of automated vehicles in the frontal cut-in scenario- an enhanced approach using piecewise mixture models[C]//IEEE. IEEE International Conference on Robotics and Automation. New York: IEEE, 2017: 197-202.
|
[77] |
GELDER E D, PAARDEKOOPER J P. Assessment of automated driving systems using real-life scenarios[C]//IEEE. 2017 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2017: 589-594.
|
[78] |
YAO Wen, ZENG Qi-qi, LIN Yu-ping, et al. On-road vehicle trajectory collection and scene-based lane change analysis: part Ⅱ[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(1): 206-220. doi: 10.1109/TITS.2016.2571724
|
[79] |
张强, 黄俊富, 张胜根, 等. 基于自然驾驶数据的APS系统测试评价场景研究[C]//中国汽车工程学会. 2018中国汽车工程学会年会. 北京: 中国汽车工程学会, 2018: 266-270.ZHANG Qiang, HUANG Jun-fu, ZHANG Sheng-gen, et al. Study of test and evaluation scenario for assisted parking system based on China-FOT[C]//China-SAE. 2018 China-SAE Congress. Beijing: China-SAE, 2018: 266-270. (in Chinese)
|
[80] |
刘颖, 贺锦鹏, 刘卫国, 等. 自动紧急制动系统行人测试场景的研究[J]. 汽车技术, 2014(3): 35-39. doi: 10.3969/j.issn.1000-3703.2014.03.009LIU Ying, HE Jin-peng, LIU Wei-guo, et al. Research on test scenarios for AEB pedestrian system[J]. Automobile Technology, 2014(3): 35-39. (in Chinese) doi: 10.3969/j.issn.1000-3703.2014.03.009
|
[81] |
HAUER F, SCHMIDT T, HOLZMULLER B, et al. Did we test all scenarios for automated and autonomous driving systems?[C]//IEEE. 2019 IEEE Intelligent Transportation Systems Conference. New York: IEEE, 2019: 2950-2955.
|
[82] |
HALLERBACH S, XIA Y, EBERLE U, et al. Simulation-based identification of critical scenarios for cooperative and automated vehicles[J]. SAE International, 2018, 1(2): 93-106. http://www.researchgate.net/publication/324194968_Simulation-Based_Identification_of_Critical_Scenarios_for_Cooperative_and_Automated_Vehicles
|
[83] |
KIM B, MASUDA T, SHIRAISHI S. Test specification and generation for connected and autonomous vehicle in virtual environments[J]. ACM Transactions on Cyber-Physical Systems, 2019, 4(1): 1-26. doi: 10.23939/acps2019.01.001
|
[84] |
MASUDA S, NAKAMURA H, KAJITANI K. Rule-based searching for collision test cases of autonomous vehicles simulation[J]. IET Intelligent Transport Systems, 2018, 12(9): 1088-1095. doi: 10.1049/iet-its.2018.5335
|
[85] |
ZHENG Xiao-kun, LIANG Hua-wei, YU Biao, et al. Rapid generation of challenging simulation scenarios for autonomous vehicles based on adversarial test[C]//IEEE. 2020 IEEE International Conference on Mechatronics and Automation. New York: IEEE, 2020: 1166-1172.
|
[86] |
WEN M, PARK J, CHO K. A scenario generation pipeline for autonomous vehicle simulators[J]. Human-centric Computing and Information Sciences, 2020, 10(1): 1-15. doi: 10.1186/s13673-019-0205-6
|
[87] |
XIA Qin, DUAN Jian-lin, GAO Feng, et al. Automatic generation method of test scenario for ADAS based on complexity[C]//SAE. SAE 2017 Intelligent and Connected Vehicles Symposium. Warrendale: SAE, 2017: 1-9.
|
[88] |
舒红, 袁康, 修海林, 等. 自动驾驶汽车基础测试场景构建研究[J]. 中国公路学报, 2019, 32(11): 245-254. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201911026.htmSHU Hong, YUAN Kang, XIU Hai-lin, et al. Construction of basic test scenarios of automated vehicles[J]. China Journal of Highway and Transport, 2019, 32(11): 245-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201911026.htm
|
[89] |
WAGNER S, GROH K, KUHBECK T, et al. Using time-to-react based on naturalistic traffic object behavior for scenario-based risk assessment of automated driving[C]//IEEE. 2018 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2018: 1521-1528.
|
[90] |
ZOFKA M R, KUHNT F, KOHLHAAS R, et al. Data-driven simulation and parametrization of traffic scenarios for the development of advanced driver assistance systems[C]//IEEE. 2015 18th International Conference on Information Fusion, New York: IEEE, 2015: 1422-1428.
|
[91] |
MULLINS G E, STANKIEWICZ P G, HAWTHORNE R C, et al. Adaptive generation of challenging scenarios for testing and evaluation of autonomous vehicles[J]. Journal of Systems and Software, 2018, 137: 197-215. doi: 10.1016/j.jss.2017.10.031
|
[92] |
ZHAO D, HUANG X, PENG H, et al. Accelerated evaluation of automated vehicles in car-following maneuvers[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(3): 733-744. doi: 10.1109/TITS.2017.2701846
|
[93] |
LANGNER J, BACH J, RIES L, et al. Estimating the uniqueness of test scenarios derived from recorded real-world-driving-data using autoencoders[C]//IEEE. 2018 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2018: 1860-1866.
|
[94] |
TATAR M. Enhancing ADAS test and validation with automated search for critical situations[C]//DSA. DSC 2015 Europe—Driving Simulation Conference and Exhibition. Boulogne-Billancourt: DSA, 2015: 1-4.
|
[95] |
LI Y, TAO J, WOTAWA F. Ontology-based test generation for automated and autonomous driving functions[J]. Information and Software Technology, 2020, 117: 106200. doi: 10.1016/j.infsof.2019.106200
|
[96] |
KOREN M, ALSAIF S, LEE R, et al. Adaptive stress testing for autonomous vehicles[C]//IEEE. 2018 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2018: 1-7.
|
[97] |
FREMONT D J, KIM E, PANT Y V, et al. Formal scenario-based testing of autonomous vehicles: from simulation to the real world[C]//IEEE. 2020 IEEE International Conference on Intelligent Transportation Systems. New York: IEEE, 2020: 1-8.
|
[98] |
MULLINS G E, DRESS A G, STANKIEWICZ P G, et al. Accelerated testing and evaluation of autonomous vehicles via imitation learning[C]//IEEE. 2018 IEEE International Conference on Robotics and Automation. New York: IEEE, 2018: 5636-5642.
|
[99] |
赵祥模, 承靖钧, 徐志刚, 等. 基于整车在环仿真的自动驾驶汽车室内快速测试平台[J]. 中国公路学报, 2019, 32(6): 124-136. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906014.htmZHAO Xiang-mo, CHENG Jing-jun, XU Zhi-gang, et al. An indoor rapid-testing platform for autonomous vehicle based on vehicle-in-the-loop simulation[J]. China Journal of Highway and Transport, 2019, 32(6): 124-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906014.htm
|
[100] |
SHAO Y, ZULKEFLI M A M, SUN Z, et al. Evaluating connected and autonomous vehicles using a hardware-in-the-loop testbed and a living lab[J]. Transportation Research Part C: Emerging Technologies, 2019, 102: 121-135. doi: 10.1016/j.trc.2019.03.010
|
[101] |
LIU Fei-qi, ZHAO Fu-quan, LIU Zong-wei, et al. Can autonomous vehicle reduce greenhouse gas emissions? A country-level evaluation[J]. Energy Policy, 2019, 132: 462-473. doi: 10.1016/j.enpol.2019.06.013
|
[102] |
KAMANN A, HASIRLIOGLU S, DORIC I, et al. Test methodology for automotive surround sensors in dynamic driving situations[C]//IEEE. 2017 IEEE 85th Vehicular Technology Conference: VTC-Spring. New York: IEEE, 2017: 1-6.
|
[103] |
赵祥模, 王文威, 王润民, 等. 智能汽车整车在环测试台转向随动系统[J]. 长安大学学报(自然科学版), 2019, 39(6): 116-126. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201906014.htmZHAO Xiang-mo, WANG Wen-wei, WANG Run-min, et al. Turn following system of intelligent vehicle-in-loop test bench[J]. Journal of Chang'an University(Natural Science Edition), 2019, 39(6): 116-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201906014.htm
|