留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EBBR试验下沥青结合料低温性能评价指标

冯德成 崔世彤 易军艳 王东升

冯德成, 崔世彤, 易军艳, 王东升. EBBR试验下沥青结合料低温性能评价指标[J]. 交通运输工程学报, 2021, 21(5): 94-103. doi: 10.19818/j.cnki.1671-1637.2021.05.008
引用本文: 冯德成, 崔世彤, 易军艳, 王东升. EBBR试验下沥青结合料低温性能评价指标[J]. 交通运输工程学报, 2021, 21(5): 94-103. doi: 10.19818/j.cnki.1671-1637.2021.05.008
FENG De-cheng, CUI Shi-tong, YI Jun-yan, WANG Dong-sheng. Low temperature performance evaluation indexes of asphalt binder based on EBBR test[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 94-103. doi: 10.19818/j.cnki.1671-1637.2021.05.008
Citation: FENG De-cheng, CUI Shi-tong, YI Jun-yan, WANG Dong-sheng. Low temperature performance evaluation indexes of asphalt binder based on EBBR test[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 94-103. doi: 10.19818/j.cnki.1671-1637.2021.05.008

EBBR试验下沥青结合料低温性能评价指标

doi: 10.19818/j.cnki.1671-1637.2021.05.008
基金项目: 

国家自然科学基金项目 51878229

详细信息
    作者简介:

    冯德成(1967-), 男, 河南新县人, 哈尔滨工业大学教授, 工学博士,从事路面材料与结构研究

  • 中图分类号: U416.217

Low temperature performance evaluation indexes of asphalt binder based on EBBR test

Funds: 

National Natural Science Foundation of China 51878229

More Information
  • 摘要: 聚焦沥青结合料低温性能评价指标,基于流变学的弯曲梁流变仪试验、改进弯曲梁流变仪试验,分别分析了实际路面回收沥青、老化后的基质沥青、改性沥青低温流变性能规律;利用传统劲度模量及模量变化率指标展开了沥青的低温性能评价,提出了等效低温设计温度指标与温度差异值指标;在不同养护环境下进行模拟,利用低温等级损失指标对新制备、回收沥青展开了低温物理硬化影响因素研究;利用不同来源、不同品种沥青试验结果相互验证,从抗干扰能力、稳定性、评价准确度、直观性与指标获取难易程度等方面对上述指标进行分析,确立了4类指标对沥青低温性能的区分与评价能力。研究结果表明:回收沥青的实验室流变分析能够反映路面结构的低温抗裂水平,开裂严重路段沥青的模量明显高于其他路段,其数值差异可达130 MPa;新制备的SBS改性沥青与回收沥青低温加载规律一致性高,模量偏差低于15%,可有效搭建起实验室研究同实际路面病害处理需要的关系;传统指标数据稳定性偏弱,置信度仅为64.7%~82.3%,难以满足研究需要,温度差异值指标及低温等级损失指标在应用方面同样受到制约,对此仍需开展更多深入的研究。

     

  • 图  1  各老化状态下PG低温等级

    Figure  1.  Low temperature grades of PG in various aging states

    图  2  EBBR养护加载条件

    Figure  2.  EBBR maintenance loading conditions

    图  3  EBBR试验养护过程

    Figure  3.  EBBR test maintenance process

    图  4  回收沥青劲度模量及其变化率

    Figure  4.  Stiffness moduli of extracted asphalt and its changing rates

    图  5  新制备沥青劲度模量变化规律

    Figure  5.  Variation rules of stiffness modulus of newly prepared asphalt

    图  6  新制备沥青劲度模量变化率规律

    Figure  6.  Changing rate rules of stiffness modulus of newly prepared asphalt

    图  7  新制备沥青等效低温等级分布

    Figure  7.  Equivalent low temperature grade distributions of newly prepared asphalts

    图  8  新制备沥青的ΔTc

    Figure  8.  ΔTc of newly prepared asphalt

    图  9  回收沥青的低温等级损失

    Figure  9.  Low temperature grade losses of extracted asphalts

    图  10  新制备沥青的低温等级损失

    Figure  10.  Low temperature grade losses of newly prepared asphalts

    表  1  新制备沥青老化前后针入度及软化点

    Table  1.   Penetrations and softening points of newly prepared asphalt before and after aging

    沥青品种 针入度/0.1 mm 软化点/℃
    老化前 老化后 老化前 老化后
    盘锦70# 62.4 55.5 49.5 69.8
    大连70# 77.3 48.7 49.7 54.3
    中大90# 86.3 80.2 45.3 56.2
    SBS改性 75.6 55.5 75.0 69.8
    橡胶粉改性 58.6 43.1 75.8 79.9
    SBS橡胶 54.0 22.4 81.6 89.7
    下载: 导出CSV

    表  2  新制备沥青分类

    Table  2.   Newly prepared asphalt classification

    沥青品种 未老化 短期老化 紫外老化 压力老化
    盘锦70# P70- P70-T P70-Z P70-P
    大连70# D70- D70-T D70-Z D70-P
    中大90# Z90- Z90-T Z90-Z Z90-P
    SBS改性 SBS- SBS-T SBS-Z SBS-P
    橡胶粉改性 R- R-T R-Z R-P
    SBS橡胶 SR- SR-T SR-Z SR-P
    下载: 导出CSV

    表  3  回收沥青的当量低温设计温度

    Table  3.   Equivalent low temperature design temperatures of extracted asphalt

    开裂间距/m 5~10 10~20 20~30 30~50
    Tdx/℃ -23.3 -23.6 -26.1 -27.8
    下载: 导出CSV

    表  4  回收沥青的ΔTc

    Table  4.   ΔTc of extracted asphalt

    开裂间距/m 5~10 10~20 20~30 30~50
    ΔTc/℃ 3.2 3.4 0.5 -0.8
    下载: 导出CSV
  • [1] 权戈冰. 沥青混合料低温抗裂性能评价方法研究[J]. 绿色环保建材, 2017(8): 1-2. https://www.cnki.com.cn/Article/CJFDTOTAL-HBJC201708005.htm

    QUAN Ge-bing. Research on evaluation method of asphalt mixture's low temperature anti-cracking performance[J]. Green Building Materials, 2017(8): 1-2. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBJC201708005.htm
    [2] 汲平, 徐朝. 沥青混合料低温抗裂性能评价方法的验证研究[J]. 石油沥青, 2017, 31(4): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-OILE201704022.htm

    JI Ping, XU Chao. Validation of evaluation methods for low-temperature anti-cracking performance of asphalt mixture[J]. Petroleum Asphalt, 2017, 31(4): 50-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-OILE201704022.htm
    [3] 刘贵应, 戴俊巍, 刘勇, 等. 集料均匀性对沥青混合料低温劈裂强度影响数值研究[J]. 低温建筑技术, 2018, 40(11): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW201811005.htm

    LIU Gui-ying, DAI Jun-wei, LIU Yong, et al. Numerical study on the influence of aggregate uniformity on the low-temperature splitting strength of asphalt mixture[J]. Low Temperature Construction Technology, 2018, 40(11): 12-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW201811005.htm
    [4] 杨光, 王旭东, 张晨晨. 一种基于实时温度-应变采集的沥青混合料温缩特性测试方法[J]. 中外公路, 2015, 35(1): 259-262. doi: 10.3969/j.issn.1671-2579.2015.01.057

    YANG Guang, WANG Xu-dong, ZHANG Chen-chen. A test method for temperature shrinkage characteristics of asphalt mixture based on real-time temperature-strain acquisition[J]. China and Foreign Highway, 2015, 35(1): 259-262. (in Chinese) doi: 10.3969/j.issn.1671-2579.2015.01.057
    [5] MATASTEAN M, VEALSQUEZ R, FALCHETTO, et al. Development of a simple test to determine the low temperature creep compliance of asphalt mixtures[R]. Washington DC: TRB, 2009.
    [6] 马宏岩. AASHTO沥青路面低温开裂预估模型的验证与改进[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    MA Hong-yan. Verification and improvement of AASHTO asphalt pavement low temperature cracking prediction model[D]. Harbin: Harbin Institute of Technology, 2011. (in Chinese)
    [7] 董雨明. 硬质沥青及其混合料流变特性与低温性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    DONG Yu-ming. Research on rheological properties and low temperature performance of hard asphalt and its mixture[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
    [8] ZHAO M O, HESP S A M. Performance grading of the Lamont, Alberta C-SHRP pavement trial binders[J]. International Journal of Pavement Engineering, 2006, 7(3): 199-211. doi: 10.1080/10298430600715667
    [9] 冯德成, 崔世彤, 易军艳, 等. 基于SCB试验的沥青混合料低温性能评价指标研究[J]. 中国公路学报, 2020, 33(7): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202007005.htm

    FENG De-cheng, CUI Shi-tong, YI Jun-yan, et al. Research on evaluation index of low temperature performance of asphalt mixture based on SCB test[J]. China Journal of Highway and Transport, 2020, 33(7): 50-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202007005.htm
    [10] 袁迎捷. 基于Superpave的沥青胶浆流变特性与集配优化研究[D]. 西安: 长安大学, 2004.

    YUAN Ying-jie. Research on rheological properties and optimization of asphalt mortar based on Superpave system[D]. Xi'an: Chang'an University, 2004. (in Chinese)
    [11] 张兴友, 胡光艳, 谭忆秋. 硅藻土改性沥青混合料低温抗裂性能研究[J]. 公路交通科技, 2006(4): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200604002.htm

    ZHANG Xing-you, HU Guang-yan, TAN Yi-qiu. Research on low temperature anti-cracking performance of diatomite modified asphalt mixture[J]. Highway and Transportation Science and Technology, 2006(4): 11-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200604002.htm
    [12] 冯中良, 曹荣吉, 贾渝, 等. 采用特征温度指标评价沥青胶结料低温性能的研究[J]. 中外公路, 2009, 29(1): 245-247. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200901072.htm

    FENG Zhong-liang, CAO Rong-ji, JIA Yu, et al. Research on evaluation the low-temperature performance of asphalt binder using characteristic temperature index[J]. China and Foreign Highway, 2009, 29(1): 245-247. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200901072.htm
    [13] 谭忆秋, 符永康, 纪伦, 等. 橡胶沥青低温评价指标[J]. 哈尔滨工业大学学报, 2016, 48(3): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201603011.htm

    TAN Yi-qiu, FU Yong-kang, JI Lun, et al. Low temperature evaluation index of rubber asphalt[J]. Journal of Harbin Institute of Technology, 2016, 48(3): 66-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201603011.htm
    [14] FROMM H J. Study of temperature cracking of bituminous pavements[J]. Association of Asphalt Paving Technologists, 1972, 36(5): 255-258.
    [15] READSHOW E E. Asphalt specifications in British Columbia for low temperature performance[J]. Asphalt Paving Technologists, 1980, 43(15): 562-581.
    [16] HEUKELOM W. An improved method of characterizing asphaltic bitumens with the aid of their mechanical properties[J]. Association of Asphalt Paving Technologists, 1973, 42(3): 252-260.
    [17] KANDHAL P S. Past, present, and future of asphalt binder rheological parameters[C]//TRB. The 96th Annual Meeting of the Transportation Research Board. Washington DC: TRB, 2019: 15-21.
    [18] ANDERSON R M, KING G N, HANSON D I, et al. Evaluation of the relationship between asphalt binder properties and non-load related cracking[J]. Association of Asphalt Paving Technologists, 2011, 80: 40-45.
    [19] 聂忆华, 孙世恒, 丁海波, 等. 沥青胶结料低温物理硬化及结晶动力学分析[J]. 建筑材料学报, 2018, 21(4): 683-688. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201804027.htm

    NIE Yi-hua, SUN Shi-heng, DING Hai-bo, et al. Low-temperature physical hardening and crystallization kinetic analysis of asphalt binder[J]. Journal of Building Materials, 2018, 21(4): 683-688. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201804027.htm
    [20] HESP S A M, LLIUTA S. Reversible aging in asphalt binders[J]. Energy and Fuels, 2007, 21(2): 1112-1121.
    [21] ALAVI M Z, HE Y, JONES D. Investigation of the effect of reclaimed asphalt pavement and reclaimed asphalt shingles on the performance properties of asphalt binders: interim report[R]. Davis: University of California, 2017.
    [22] 布海玲, 刘涛, 杨三强. 新疆地区常用沥青短期老化低温性能的评价[J]. 重庆交通大学学报(自然科学版), 2015, 34(2): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201502011.htm

    BU Hai-ling, LIU Tao, YANG San-qiang. Evaluation of short-term aging and low temperature performance of common asphalt in Xinjiang[J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2015, 34(2): 50-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201502011.htm
    [23] 刘明鹏. 物理硬化对沥青材料低温性能影响机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    LIU Ming-peng. Research on the mechanism of physical hardening on the low-temperature performance of asphalt materials[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
    [24] 聂忆华, 胡静轩. 加拿大改进的沥青弯曲梁流变试验(EBBR)介绍[J]. 中外公路, 2017, 37(5): 242-247. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201705053.htm

    NIE Yi-hua, HU Jing-xuan. Introduction to Canada's improved asphalt bending beam rheological test (EBBR)[J]. China and Foreign Highway, 2017, 37(5): 242-247. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201705053.htm
    [25] BUNCHER M. Use of the Delta Tc parameter to characterize asphalt binder behavior[R]. New York: Asphalt Institute Technical Advisory Committee, 2019.
    [26] KLUTTZ R Q. Prepared discussion on relationships between mixture fatigue performance and asphalt binder properties[J]. Association of Asphalt Paving Technologists, 2019, 88: 108-112.
    [27] CHRISTENSEN D W, TRAN N. Relationships between mixture fatigue performance and asphalt binder properties[C]// Association of Asphalt Paving Technology. Asphalt Paving Technology 2019. Washington DC: Association of Asphalt Paving Technology, 2019: 431-473.
    [28] LI Xin-jun, GIBSON X N, ANDRIESCU A, et al. Performance evaluation of REOB-modified asphalt binders and mixtures[J]. Association of Asphalt Paving Technologists, 2016, 85: 92-95.
    [29] LIU Y, SU P, LI M, et al. Review on evolution and evaluation of asphalt pavement structures and materials[J]. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7(5): 573-599.
    [30] KANABAR A. Physical and chemical aging behavior of asphalt cements from two northern Ontario pavement[D]. Kingston: Queen's University, 2010.
    [31] ILIUTA S, ANDRICSCU A, HESP S A M. Improved approach to low temperature and fatigue fracture performance grading of asphalt cements[C]//CTAA. 2004 Annual Conference of the Canadian Technical Asphalt Association. Kelowna: CTAA, 2004: 589-594.
    [32] HESP S A M, ILIUTA S. Reversible ageing in asphalt at low temperatures[J]. Energy and Fuels, 2007, 21: 1112-1121.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  797
  • HTML全文浏览量:  356
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-09
  • 网络出版日期:  2021-11-13
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回