Low temperature performance evaluation indexes of asphalt binder based on EBBR test
-
摘要: 聚焦沥青结合料低温性能评价指标,基于流变学的弯曲梁流变仪试验、改进弯曲梁流变仪试验,分别分析了实际路面回收沥青、老化后的基质沥青、改性沥青低温流变性能规律;利用传统劲度模量及模量变化率指标展开了沥青的低温性能评价,提出了等效低温设计温度指标与温度差异值指标;在不同养护环境下进行模拟,利用低温等级损失指标对新制备、回收沥青展开了低温物理硬化影响因素研究;利用不同来源、不同品种沥青试验结果相互验证,从抗干扰能力、稳定性、评价准确度、直观性与指标获取难易程度等方面对上述指标进行分析,确立了4类指标对沥青低温性能的区分与评价能力。研究结果表明:回收沥青的实验室流变分析能够反映路面结构的低温抗裂水平,开裂严重路段沥青的模量明显高于其他路段,其数值差异可达130 MPa;新制备的SBS改性沥青与回收沥青低温加载规律一致性高,模量偏差低于15%,可有效搭建起实验室研究同实际路面病害处理需要的关系;传统指标数据稳定性偏弱,置信度仅为64.7%~82.3%,难以满足研究需要,温度差异值指标及低温等级损失指标在应用方面同样受到制约,对此仍需开展更多深入的研究。Abstract: Focusing on the evaluation indexes of the low temperature performance of asphalt binders, based on rheological bending beam rheometer (BBR) and extended bending beam rheometer (EBBR) tests, the low temperature rheological properties of the extracted asphalt, aging base asphalt and modified asphalt on actual pavements were analyzed. The low temperature performance evaluations of the asphalts were carried out using the traditional stiffness modulus and modulus changing rate. The equivalent low temperature design temperature index and the temperature difference value index were proposed. Simulations in different curing environments were conducted, and the influencing factors of physical hardening of newly prepared and extracted asphalt at low temperature were studied using low temperature grade loss index. Different sources and types of asphalt test results were used to verify each other, the above indexes were compared and analyzed in terms of anti-interference ability, stability, evaluation accuracy, intuitiveness, and difficulty in obtaining indexes. The abilities of four indexes in distinguishing and evaluating the low temperature performance of asphalt were established. Research results show that the laboratory rheological analysis of the extracted asphalt can reflect the low temperature crack resistance level of the pavement structure. The modulus of the asphalt in the severely cracked section is significantly higher than those in the other sections, and the value difference can reach about 130 MPa. The newly prepared SBS modified asphalt and the extracted asphalt have a high consistency at low temperature loads, and the modulus deviation is lower than 15%. It can effectively establishes the relationship between laboratory research and actual pavement disease treatment needs. The stability of traditional index data is weak, and the confidence is only 64.7%-82.3%, which is difficult to satisfy the research needs. The applications of temperature difference value index and low temperature grade loss index is also restricted, which still needs more in-depth research. 4 tabs, 10 figs, 32 refs.
-
表 1 新制备沥青老化前后针入度及软化点
Table 1. Penetrations and softening points of newly prepared asphalt before and after aging
沥青品种 针入度/0.1 mm 软化点/℃ 老化前 老化后 老化前 老化后 盘锦70# 62.4 55.5 49.5 69.8 大连70# 77.3 48.7 49.7 54.3 中大90# 86.3 80.2 45.3 56.2 SBS改性 75.6 55.5 75.0 69.8 橡胶粉改性 58.6 43.1 75.8 79.9 SBS橡胶 54.0 22.4 81.6 89.7 表 2 新制备沥青分类
Table 2. Newly prepared asphalt classification
沥青品种 未老化 短期老化 紫外老化 压力老化 盘锦70# P70- P70-T P70-Z P70-P 大连70# D70- D70-T D70-Z D70-P 中大90# Z90- Z90-T Z90-Z Z90-P SBS改性 SBS- SBS-T SBS-Z SBS-P 橡胶粉改性 R- R-T R-Z R-P SBS橡胶 SR- SR-T SR-Z SR-P 表 3 回收沥青的当量低温设计温度
Table 3. Equivalent low temperature design temperatures of extracted asphalt
开裂间距/m 5~10 10~20 20~30 30~50 Tdx/℃ -23.3 -23.6 -26.1 -27.8 表 4 回收沥青的ΔTc
Table 4. ΔTc of extracted asphalt
开裂间距/m 5~10 10~20 20~30 30~50 ΔTc/℃ 3.2 3.4 0.5 -0.8 -
[1] 权戈冰. 沥青混合料低温抗裂性能评价方法研究[J]. 绿色环保建材, 2017(8): 1-2. https://www.cnki.com.cn/Article/CJFDTOTAL-HBJC201708005.htmQUAN Ge-bing. Research on evaluation method of asphalt mixture's low temperature anti-cracking performance[J]. Green Building Materials, 2017(8): 1-2. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBJC201708005.htm [2] 汲平, 徐朝. 沥青混合料低温抗裂性能评价方法的验证研究[J]. 石油沥青, 2017, 31(4): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-OILE201704022.htmJI Ping, XU Chao. Validation of evaluation methods for low-temperature anti-cracking performance of asphalt mixture[J]. Petroleum Asphalt, 2017, 31(4): 50-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-OILE201704022.htm [3] 刘贵应, 戴俊巍, 刘勇, 等. 集料均匀性对沥青混合料低温劈裂强度影响数值研究[J]. 低温建筑技术, 2018, 40(11): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW201811005.htmLIU Gui-ying, DAI Jun-wei, LIU Yong, et al. Numerical study on the influence of aggregate uniformity on the low-temperature splitting strength of asphalt mixture[J]. Low Temperature Construction Technology, 2018, 40(11): 12-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW201811005.htm [4] 杨光, 王旭东, 张晨晨. 一种基于实时温度-应变采集的沥青混合料温缩特性测试方法[J]. 中外公路, 2015, 35(1): 259-262. doi: 10.3969/j.issn.1671-2579.2015.01.057YANG Guang, WANG Xu-dong, ZHANG Chen-chen. A test method for temperature shrinkage characteristics of asphalt mixture based on real-time temperature-strain acquisition[J]. China and Foreign Highway, 2015, 35(1): 259-262. (in Chinese) doi: 10.3969/j.issn.1671-2579.2015.01.057 [5] MATASTEAN M, VEALSQUEZ R, FALCHETTO, et al. Development of a simple test to determine the low temperature creep compliance of asphalt mixtures[R]. Washington DC: TRB, 2009. [6] 马宏岩. AASHTO沥青路面低温开裂预估模型的验证与改进[D]. 哈尔滨: 哈尔滨工业大学, 2011.MA Hong-yan. Verification and improvement of AASHTO asphalt pavement low temperature cracking prediction model[D]. Harbin: Harbin Institute of Technology, 2011. (in Chinese) [7] 董雨明. 硬质沥青及其混合料流变特性与低温性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.DONG Yu-ming. Research on rheological properties and low temperature performance of hard asphalt and its mixture[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese) [8] ZHAO M O, HESP S A M. Performance grading of the Lamont, Alberta C-SHRP pavement trial binders[J]. International Journal of Pavement Engineering, 2006, 7(3): 199-211. doi: 10.1080/10298430600715667 [9] 冯德成, 崔世彤, 易军艳, 等. 基于SCB试验的沥青混合料低温性能评价指标研究[J]. 中国公路学报, 2020, 33(7): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202007005.htmFENG De-cheng, CUI Shi-tong, YI Jun-yan, et al. Research on evaluation index of low temperature performance of asphalt mixture based on SCB test[J]. China Journal of Highway and Transport, 2020, 33(7): 50-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202007005.htm [10] 袁迎捷. 基于Superpave的沥青胶浆流变特性与集配优化研究[D]. 西安: 长安大学, 2004.YUAN Ying-jie. Research on rheological properties and optimization of asphalt mortar based on Superpave system[D]. Xi'an: Chang'an University, 2004. (in Chinese) [11] 张兴友, 胡光艳, 谭忆秋. 硅藻土改性沥青混合料低温抗裂性能研究[J]. 公路交通科技, 2006(4): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200604002.htmZHANG Xing-you, HU Guang-yan, TAN Yi-qiu. Research on low temperature anti-cracking performance of diatomite modified asphalt mixture[J]. Highway and Transportation Science and Technology, 2006(4): 11-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200604002.htm [12] 冯中良, 曹荣吉, 贾渝, 等. 采用特征温度指标评价沥青胶结料低温性能的研究[J]. 中外公路, 2009, 29(1): 245-247. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200901072.htmFENG Zhong-liang, CAO Rong-ji, JIA Yu, et al. Research on evaluation the low-temperature performance of asphalt binder using characteristic temperature index[J]. China and Foreign Highway, 2009, 29(1): 245-247. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200901072.htm [13] 谭忆秋, 符永康, 纪伦, 等. 橡胶沥青低温评价指标[J]. 哈尔滨工业大学学报, 2016, 48(3): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201603011.htmTAN Yi-qiu, FU Yong-kang, JI Lun, et al. Low temperature evaluation index of rubber asphalt[J]. Journal of Harbin Institute of Technology, 2016, 48(3): 66-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201603011.htm [14] FROMM H J. Study of temperature cracking of bituminous pavements[J]. Association of Asphalt Paving Technologists, 1972, 36(5): 255-258. [15] READSHOW E E. Asphalt specifications in British Columbia for low temperature performance[J]. Asphalt Paving Technologists, 1980, 43(15): 562-581. [16] HEUKELOM W. An improved method of characterizing asphaltic bitumens with the aid of their mechanical properties[J]. Association of Asphalt Paving Technologists, 1973, 42(3): 252-260. [17] KANDHAL P S. Past, present, and future of asphalt binder rheological parameters[C]//TRB. The 96th Annual Meeting of the Transportation Research Board. Washington DC: TRB, 2019: 15-21. [18] ANDERSON R M, KING G N, HANSON D I, et al. Evaluation of the relationship between asphalt binder properties and non-load related cracking[J]. Association of Asphalt Paving Technologists, 2011, 80: 40-45. [19] 聂忆华, 孙世恒, 丁海波, 等. 沥青胶结料低温物理硬化及结晶动力学分析[J]. 建筑材料学报, 2018, 21(4): 683-688. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201804027.htmNIE Yi-hua, SUN Shi-heng, DING Hai-bo, et al. Low-temperature physical hardening and crystallization kinetic analysis of asphalt binder[J]. Journal of Building Materials, 2018, 21(4): 683-688. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201804027.htm [20] HESP S A M, LLIUTA S. Reversible aging in asphalt binders[J]. Energy and Fuels, 2007, 21(2): 1112-1121. [21] ALAVI M Z, HE Y, JONES D. Investigation of the effect of reclaimed asphalt pavement and reclaimed asphalt shingles on the performance properties of asphalt binders: interim report[R]. Davis: University of California, 2017. [22] 布海玲, 刘涛, 杨三强. 新疆地区常用沥青短期老化低温性能的评价[J]. 重庆交通大学学报(自然科学版), 2015, 34(2): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201502011.htmBU Hai-ling, LIU Tao, YANG San-qiang. Evaluation of short-term aging and low temperature performance of common asphalt in Xinjiang[J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2015, 34(2): 50-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201502011.htm [23] 刘明鹏. 物理硬化对沥青材料低温性能影响机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.LIU Ming-peng. Research on the mechanism of physical hardening on the low-temperature performance of asphalt materials[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese) [24] 聂忆华, 胡静轩. 加拿大改进的沥青弯曲梁流变试验(EBBR)介绍[J]. 中外公路, 2017, 37(5): 242-247. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201705053.htmNIE Yi-hua, HU Jing-xuan. Introduction to Canada's improved asphalt bending beam rheological test (EBBR)[J]. China and Foreign Highway, 2017, 37(5): 242-247. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201705053.htm [25] BUNCHER M. Use of the Delta Tc parameter to characterize asphalt binder behavior[R]. New York: Asphalt Institute Technical Advisory Committee, 2019. [26] KLUTTZ R Q. Prepared discussion on relationships between mixture fatigue performance and asphalt binder properties[J]. Association of Asphalt Paving Technologists, 2019, 88: 108-112. [27] CHRISTENSEN D W, TRAN N. Relationships between mixture fatigue performance and asphalt binder properties[C]// Association of Asphalt Paving Technology. Asphalt Paving Technology 2019. Washington DC: Association of Asphalt Paving Technology, 2019: 431-473. [28] LI Xin-jun, GIBSON X N, ANDRIESCU A, et al. Performance evaluation of REOB-modified asphalt binders and mixtures[J]. Association of Asphalt Paving Technologists, 2016, 85: 92-95. [29] LIU Y, SU P, LI M, et al. Review on evolution and evaluation of asphalt pavement structures and materials[J]. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7(5): 573-599. [30] KANABAR A. Physical and chemical aging behavior of asphalt cements from two northern Ontario pavement[D]. Kingston: Queen's University, 2010. [31] ILIUTA S, ANDRICSCU A, HESP S A M. Improved approach to low temperature and fatigue fracture performance grading of asphalt cements[C]//CTAA. 2004 Annual Conference of the Canadian Technical Asphalt Association. Kelowna: CTAA, 2004: 589-594. [32] HESP S A M, ILIUTA S. Reversible ageing in asphalt at low temperatures[J]. Energy and Fuels, 2007, 21: 1112-1121.