留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

齿轨铁路导入装置动力学特性

陈再刚 唐亮 杨吉忠 陈志辉 翟婉明

陈再刚, 唐亮, 杨吉忠, 陈志辉, 翟婉明. 齿轨铁路导入装置动力学特性[J]. 交通运输工程学报, 2022, 22(1): 122-132. doi: 10.19818/j.cnki.1671-1637.2022.01.010
引用本文: 陈再刚, 唐亮, 杨吉忠, 陈志辉, 翟婉明. 齿轨铁路导入装置动力学特性[J]. 交通运输工程学报, 2022, 22(1): 122-132. doi: 10.19818/j.cnki.1671-1637.2022.01.010
CHEN Zai-gang, TANG Liang, YANG Ji-zhong, CHEN Zhi-hui, ZHAI Wan-ming. Dynamics characteristics of rack railway guiding equipment[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 122-132. doi: 10.19818/j.cnki.1671-1637.2022.01.010
Citation: CHEN Zai-gang, TANG Liang, YANG Ji-zhong, CHEN Zhi-hui, ZHAI Wan-ming. Dynamics characteristics of rack railway guiding equipment[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 122-132. doi: 10.19818/j.cnki.1671-1637.2022.01.010

齿轨铁路导入装置动力学特性

doi: 10.19818/j.cnki.1671-1637.2022.01.010
基金项目: 

国家自然科学基金项目 52022083

国家自然科学基金项目 51735012

四川省科技计划项目 2021YFG0065

四川省科技计划项目 2021YFG0065, 2021YFG0211

详细信息
    作者简介:

    陈再刚(1984-),男,四川犍为人,西南交通大学研究员,工学博士,从事轨道机车车辆与机械传动系统动力学研究

  • 中图分类号: U234

Dynamics characteristics of rack railway guiding equipment

Funds: 

National Natural Science Foundation of China 52022083

National Natural Science Foundation of China 51735012

Sichuan Science and Technology Program 2021YFG0065

Sichuan Science and Technology Program 2021YFG0065, 2021YFG0211

More Information
Article Text (Baidu Translation)
  • 摘要: 利用大型有限元商业软件ABAQUS建立了车辆-齿轨铁路导入装置耦合动力学有限元模型;仿真了齿轨车辆通过齿轨铁路导入装置的过程,分析了车辆与齿轨铁路导入装置的动态相互作用;考虑不同参数的影响,研究了齿轨铁路导入装置振动响应、结构应力、动态接触力等动态特性响应规律。研究结果表明:随着支撑弹簧预紧力的增大,齿轮转速能更快达到与车速匹配的速度,且总体上同步装置振动与动态应力会增大,入齿装置振动和动态应力将减小,校正装置振动也将减小;确定合理的支撑弹簧预紧力,应综合考虑结构应力及振动水平,在本文计算工况中,建议预紧力取3 kN;齿轨铁路导入装置的最大振动速度为5.66 m·s-1,振动速度最大均方根为1.31 m·s-1,最大振动加速度为5 657.82 m·s-2,振动加速度最大均方根为479.36 m·s-2,都出现在支撑弹簧预紧力1 kN工况下;随着齿轮初始转速增加至车速,总体上同步装置垂向振动变化不大,纵向振动减小,齿轮初始转速越接近车速越好;列车通过速度越大,齿轮对整个齿轨铁路导入装置的冲击力越大,因此,确定合理的列车通过速度,应综合考虑冲击振动及行车效率,在计算的5和10 km·h-1的速度中,建议通过速度为5 km·h-1或者低于5 km·h-1

     

  • 图  1  齿轨铁路导入装置结构

    Figure  1.  Structure of RRGE

    图  2  车辆-齿轨铁路导入装置耦合动力学有限元模型

    Figure  2.  Coupled dynamics finite element model of vehicle-RRGE

    图  3  齿轮转动角位移时程曲线

    Figure  3.  Time-history curves of gear rotation angular displacement

    图  4  齿轮转速时程曲线

    Figure  4.  Time-history curves of gear rotation speed

    图  5  同步装置垂向位移时程曲线

    Figure  5.  Time-history curves of vertical displacement of synchronous section

    图  6  同步装置右端振动速度时程曲线

    Figure  6.  Time-history curve of vibration velocity at right end of synchronous section

    图  7  同步装置右端振动加速度时程曲线

    Figure  7.  Time-history curve of vibration acceleration at right end of synchronous section

    图  8  齿轨铁路导入装置振动速度响应统计结果

    Figure  8.  Statistical results of vibration velocity response of RRGE

    图  9  齿轨铁路导入装置振动加速度响应统计结果

    Figure  9.  Statistical results of vibration acceleration response of RRGE

    图  10  校正装置最大齿根应力

    Figure  10.  Maximum root stresses of calibration section

    图  11  齿轨铁路导入装置最大垂向位移

    Figure  11.  Maximum vertical displacements of RRGE

    图  12  齿轨铁路导入装置垂向振动速度均方根

    Figure  12.  Root mean squares of vertical vibration velocity of RRGE

    图  13  齿轨铁路导入装置垂向振动加速度均方根

    Figure  13.  Root mean squares of vertical vibration acceleration of RRGE

    图  14  齿轨铁路导入装置纵向振动速度均方根

    Figure  14.  Root mean squares of longitudinal vibration velocity of RRGE

    图  15  齿轨铁路导入装置纵向振动加速度均方根

    Figure  15.  Root mean squares of longitudinal vibration acceleration of RRGE

    表  1  齿轮与齿条传动设计参数

    Table  1.   Gear and rack drive design parameters

    参数 齿轮 齿条
    全齿高/mm 62.580 52.115
    模数/mm 31.831 31.831
    齿形角/(°) 14.036 14.036
    齿宽/mm 60 60
    齿数 22
    齿顶高系数 0.9
    顶隙系数 0.166
    下载: 导出CSV

    表  2  齿轨铁路导入装置最大垂向位移

    Table  2.   Maximum vertical displacements of RRGE

    预紧力/kN 轨道位置 垂向位移/mm
    1 入齿装置左端 197.34
    2 入齿装置左端 66.38
    3 入齿装置左端 46.51
    1 入齿装置右端 82.09
    2 入齿装置右端 64.28
    3 入齿装置右端 12.06
    1 校正装置左端 56.63
    2 校正装置左端 18.48
    3 校正装置左端 4.63
    下载: 导出CSV

    表  3  同步装置底板应力

    Table  3.   Base plate stresses of synchronous section

    预紧力/kN 位置 应力最大值/MPa 应力均方根/MPa
    1 53.21 8.22
    2 72.35 14.07
    3 59.86 16.42
    1 62.58 18.50
    2 100.75 37.06
    3 142.23 54.16
    1 37.35 7.64
    2 55.38 12.76
    3 72.58 15.99
    下载: 导出CSV

    表  4  垂向接触力仿真计算结果

    Table  4.   Simulation results of vertical contact force

    速度/(km·h-1) 接触对 最大值/kN 均方根/kN
    5 齿轮-同步装置 36.65 7.27
    5 齿轮-入齿装置 49.12 8.07
    5 齿轮-校正装置 13.72 0.97
    10 齿轮-同步装置 82.13 8.94
    10 齿轮-入齿装置 124.18 16.97
    10 齿轮-校正装置 188.52 16.85
    下载: 导出CSV

    表  5  纵向接触力仿真计算结果

    Table  5.   Simulation results of longitudinal contact force

    速度/(km·h-1) 接触对 最大值/kN 均方根/kN
    5 齿轮-同步装置 61.36 2.47
    5 齿轮-入齿装置 56.91 11.05
    5 齿轮-校正装置 55.08 3.55
    10 齿轮-同步装置 114.93 4.30
    10 齿轮-入齿装置 267.99 30.86
    10 齿轮-校正装置 342.07 38.51
    下载: 导出CSV
  • [1] WEBER M, ABT M S. Rack-railway locomotives of the Swiss mountain railways[J]. Proceedings of the Institution of Mechanical Engineers, 1911, 81(1): 539-577. doi: 10.1243/PIME_PROC_1911_081_007_02
    [2] 王争鸣. 复杂山区铁路选线思路及理念[J]. 铁道工程学报, 2016, 33(10): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201610002.htm

    WANG Zheng-ming. Methods and ideas of railway route selection in complicated mountainous areas[J]. Journal of Railway Engineering Society, 2016, 33(10): 5-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201610002.htm
    [3] 井国庆, 杜文博, 蔡向辉, 等. 齿轨铁路齿轨系统及轨下基础研究[J]. 中国铁路, 2021(3): 94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202103017.htm

    JING Guo-qing, DU Wen-bo, CAI Xiang-hui, et al. Track structure system and stress of rack railway[J]. China Railway, 2021(3): 94-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202103017.htm
    [4] 冯帅. 山区旅游观光铁路车辆选型探讨[J]. 铁道建筑技术, 2017(2): 27-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS201702008.htm

    FENG Shuai. Discussion on vehicle selection of mountain tourist railway[J]. Railway Construction Technology, 2017(2): 27-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS201702008.htm
    [5] 沈健. 山地齿轨旅游交通系统技术及应用研究[J]. 机械工程与自动化, 2020(4): 222-224. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJX202004092.htm

    SHEN Jian. Research on technology and application of mountainous rack tourism transportation system[J]. Mechanical Engineering and Automation, 2020(4): 222-224. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXJX202004092.htm
    [6] STARBUCK D R. The Cog Railway on Mount Washington[J]. The Journal of the Society for Industrial Archeology, 1994, 20(1/2): 101-118.
    [7] SMITH P. Thomas Cook and Son's Vesuvius Railway[J]. Japan Railway and Transport Review, 1998, 15(3): 10-15.
    [8] 牛悦丞, 李芾, 丁军君, 等. 齿轨铁路发展及应用现状综述[J]. 铁道标准设计, 2019, 63(12): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201912008.htm

    NIU Yue-cheng, LI Fu, DING Jun-jun, et al. Overview of mountain rack railway development and application[J]. Railway Standard Design, 2019, 63(12): 37-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201912008.htm
    [9] 姬燕男. 张家界七星山齿轨铁路编组方案研究[J]. 甘肃科学学报, 2021, 33(6): 62-68.

    JI Yan-nan. Research on the marshalling scheme of Qixing Mountain Rack Railway in Zhangjiajie[J]. Journal of Gansu Sciences, 2021, 33(6): 62-68. (in Chinese)
    [10] 尚勤, 李廉枫, 涂旭. 国外齿轨铁路技术的发展及运用[J]. 机车电传动, 2019(2): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201902002.htm

    SHANG Qin, LI Lian-feng, TU Xu. Development and application of foreign cog railways and rack vehicles[J]. Electric Drive for Locomotives, 2019(2): 9-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201902002.htm
    [11] 余浩伟, 章玉伟, 陈粒. 齿轨铁路技术特点与应用展望研究[J]. 铁道工程学报, 2020, 37(10): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202010002.htm

    YU Hao-wei, ZHANG Yu-wei, CHEN Li. Research on the technical characteristics and application prospect of the rack railway[J]. Journal of Railway Engineering Society, 2020, 37(10): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202010002.htm
    [12] 舒睿洪, 陈志辉, 杨吉忠, 等. 山地齿轨系统结构特点及关键参数选型设计[J]. 铁道工程学报, 2021, 38(9): 24-28, 67. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202109005.htm

    SHU Rui-hong, CHEN Zhi-hui, YANG Ji-zhong, et al. Structural characteristics and key structure parameter selections of mountain cog railway[J]. Journal of Railway Engineering Society, 2021, 38(9): 24-28, 67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202109005.htm
    [13] 潘相楠, 唐岚, 寇峻瑜, 等. 山地齿轨铁路发展现状及国内应用前景研究[J]. 黑龙江科学, 2020, 11(4): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HELJ202004003.htm

    PAN Xiang-nan, TANG Lan, KOU Jun-yu, et al. Development status and domestic application research of cog railway[J]. Heilongjiang Science, 2020, 11(4): 10-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HELJ202004003.htm
    [14] NAGY A, LAKATOS I. Examining the movement differences in the behavior of normal and rack railway vehicle[J]. International Journal of Engineering and Management Sciences, 2019, 4(1): 96-103. doi: 10.21791/IJEMS.2019.1.13.
    [15] 刘宗峰. 齿轨铁路设计规范编制中桥梁荷载取值研究[J]. 铁道标准设计, 2019, 63(12): 102-106. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201912020.htm

    LIU Zong-feng. Study on bridge load value in compiling design code for rack rail[J]. Railway Standard Design, 2019, 63(12): 102-106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201912020.htm
    [16] 刘宗峰. 旅游轨道交通桥梁设计特点分析——以张家界市旅游轨道交通为例[J]. 铁道标准设计, 2019, 63(6): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201906018.htm

    LIU Zong-feng. Analysis of bridge design characteristics of tourism rail transit—taking Zhangjiajie tourist rail transit as an example[J]. Railway Standard Design, 2019, 63(6): 77-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201906018.htm
    [17] 李粮余, 欧灵畅, 尤睿, 等. 山地米轨铁路有砟轨道结构稳定性研究[J]. 铁道工程学报, 2019, 36(12): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201912005.htm

    LI Liang-yu, OU Ling-chang, YOU Rui, et al. Research on the stability of ballasted track structure in mountainous metergage railway[J]. Journal of Railway Engineering Society, 2019, 36(12): 23-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201912005.htm
    [18] 张永权, 王薇, 刘朝辉, 等. 重型采煤机齿轨轮齿形优化与啮合仿真[J]. 煤矿机电, 2016(2): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-MKJD201602011.htm

    ZHANG Yong-quan, WANG Wei, LIU Zhao-hui, et al. Gear shape optimization and meshing simulation of heavy shearer[J]. Colliery Mechanical and Electrical Technology, 2016(2): 37-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MKJD201602011.htm
    [19] 马雁翔, 续利文. 基于Pro/E采煤机复合齿廓销轨轮啮合仿真[J]. 煤矿机械, 2012, 33(7): 90-91. https://www.cnki.com.cn/Article/CJFDTOTAL-MKJX201207043.htm

    MA Yan-xiang, XU Li-wen. Compound tooth profile pin gear meshing simulation of coal shearer based Pro/E[J]. Coal Mine Machinery, 2012, 33(7): 90-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MKJX201207043.htm
    [20] 赵冠闯, 冯济桥, 丁军君, 等. 车体重心高度和转动惯量对齿轨车辆动力学性能的影响[J]. 铁道标准设计, 2021, 65(9): 181-186, 193. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202109033.htm

    ZHAO Guan-chuang, FENG Ji-qiao, DING Jun-jun, et al. Influence of height of gravity center and moment of inertia on vehicle dynamic performance[J]. Railway Standard Design, 2021, 65(9): 181-186, 193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202109033.htm
    [21] 蔡向辉, 张乾, 贺天龙. 张家界七星山齿轨铁路轨道技术研究[J]. 铁道标准设计, 2020, 64(7): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202007014.htm

    CAI Xiang-hui, ZHANG Qian, HE Tian-long. Research on track technology of Qixing Mountain Rack Railway in Zhangjiajie[J]. Railway Standard Design, 2020, 64(7): 76-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202007014.htm
    [22] 张乾, 蔡小培, 蔡向辉, 等. 齿轨铁路轨道-简支梁桥相互作用及轨缝合理位置研究[J]. 工程力学, 2021, 38(3): 248-256. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202103023.htm

    ZHANG Qian, CAI Xiao-pei, CAI Xiang-hui, et al. Research on simply supported beam-track interaction and reasonable gap position of rack railway[J]. Engineering Mechanics, 2021, 38(3): 248-256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202103023.htm
    [23] 张乾, 蔡向辉, 蔡小培, 等. 现代齿轨铁路无砟轨道纵向力学特性及结构适用性研究[J]. 铁道建筑, 2021, 61(5): 115-119. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202105026.htm

    ZHANG Qian, CAI Xiang-hui, CAI Xiao-pei, et al. Research on longitudinal mechanical characteristics and structure applicability of ballastless track of modern rack railway[J]. Railway Engineering, 2021, 61(5): 115-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202105026.htm
    [24] 韩义涛, 田春香, 张沐然, 等. 大坡道米轨道床阻力及轨排稳定性研究[J]. 铁道标准设计, 2022, 66(2): 16-22.

    HAN Yi-tao, TIAN Chun-xiang, ZHANG Mu-ran, et al. Research on resistance of large ramp meter-gauge rail bed and track panel stability[J]. Railway Standard Design, 2022, 66(2): 16-21. (in Chinese)
    [25] 杜文博, 苏成光, 韩笑东, 等. 齿轨铁路联结部件受力分析及纵向阻力研究[J]. 铁道标准设计, 2021, DOI: 10.13238/j.issn.1004-2954.202103020002.

    DU Wen-bo, SU Cheng-guang, HAN Xiao-dong, et al. Mechanical analysis and longitudinal resistance research on connection parts of rack railway[J]. Railway Standard Design, 2021, DOI: 10.13238/j.issn.1004-2954.202103020002.(in Chinese)
    [26] 代丰, 杨吉忠, 杨文茂, 等. 齿轨铁路活性粉末混凝土轨枕结构与力学性能研究[J]. 铁道标准设计, 2021, DOI: 10.13238/j.issn.1004-2954.202110140001.

    DAI Feng, YANG Ji-zhong, YANG Wen-mao, et al. Research on structure and mechanical properties of reactive powder concrete sleeperfor rack railway[J]. Railway Standard Design, 2021, DOI: 10.13238/j.issn.1004-2954.202110140001.(in Chinese)
    [27] 王坚强, 卢剑锋, 陈志辉, 等. 齿轨岔区可动齿条转换方案探讨[J]. 铁路通信信号工程技术, 2021, 18(7): 22-24, 53. https://www.cnki.com.cn/Article/CJFDTOTAL-TLTX202107007.htm

    WANG Jian-qiang, LU Jian-feng, CHEN Zhi-hui, et al. Discussion on conversion scheme of movable rack in rack rail turnout section[J]. Railway Signalling and Communication Engineering, 2021, 18(7): 22-24, 53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLTX202107007.htm
    [28] 赵轩, 温炎丰, 吴晓, 等. 基于动力学仿真的齿轨车辆限界研究[J]. 机械工程与自动化, 2021(3): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJX202103016.htm

    ZHAO Xuan, WEN Yan-feng, WU Xiao, et al. Gauge calculation of rack vehicles based on dynamics simulation[J]. Mechanical Engineering and Automation, 2021(3): 50-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXJX202103016.htm
    [29] CHEN Zhao-wei, LI Shi-hui. Dynamic evaluation and optimization of layout mode of traction motor in rack vehicle[J]. Nonlinear Dynamics, 2021, 106(4): 3025-3050.
    [30] FORRESTER B D. Advanced vibration analysis techniques for fault detection and diagnosis in geared transmission systems[D]. Melbourne: Swinburne University of Technology, 1996.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  1268
  • HTML全文浏览量:  563
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-03
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回