留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于收敛趋势变分模式分解的齿轮箱故障诊断方法

江星星 宋秋昱 朱忠奎 黄伟国 刘颉

江星星, 宋秋昱, 朱忠奎, 黄伟国, 刘颉. 基于收敛趋势变分模式分解的齿轮箱故障诊断方法[J]. 交通运输工程学报, 2022, 22(1): 177-189. doi: 10.19818/j.cnki.1671-1637.2022.01.015
引用本文: 江星星, 宋秋昱, 朱忠奎, 黄伟国, 刘颉. 基于收敛趋势变分模式分解的齿轮箱故障诊断方法[J]. 交通运输工程学报, 2022, 22(1): 177-189. doi: 10.19818/j.cnki.1671-1637.2022.01.015
JIANG Xing-xing, SONG Qiu-yu, ZHU Zhong-kui, HUANG Wei-guo, LIU Jie. Gearbox fault diagnosis method based on convergent trend-guided variational mode decomposition[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 177-189. doi: 10.19818/j.cnki.1671-1637.2022.01.015
Citation: JIANG Xing-xing, SONG Qiu-yu, ZHU Zhong-kui, HUANG Wei-guo, LIU Jie. Gearbox fault diagnosis method based on convergent trend-guided variational mode decomposition[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 177-189. doi: 10.19818/j.cnki.1671-1637.2022.01.015

基于收敛趋势变分模式分解的齿轮箱故障诊断方法

doi: 10.19818/j.cnki.1671-1637.2022.01.015
基金项目: 

国家自然科学基金项目 52172406

国家自然科学基金项目 51875376

中国博士后科学基金项目 2021M702752

苏州市重点产业技术创新项目 SYG202111

运输车辆检测、诊断与维修技术交通行业重点实验室开放基金项目 JTZL2104

详细信息
    作者简介:

    江星星(1989-),男,江西九江人,苏州大学副教授,工学博士,从事旋转机械故障诊断与自适应信号分解研究

    通讯作者:

    朱忠奎(1974-),男,山东梁山人,苏州大学教授,工学博士

  • 中图分类号: U270

Gearbox fault diagnosis method based on convergent trend-guided variational mode decomposition

Funds: 

National Natural Science Foundation of China 52172406

National Natural Science Foundation of China 51875376

China Postdoctoral Science Foundation 2021M702752

Suzhou Prospective Research Program SYG202111

Open Project of Key Laboratory of Transportation Industry for Transport Vehicle Detection, Diagnosis and Maintenance Technology JTZL2104

More Information
  • 摘要: 从中心频率的角度出发,深入分析变分模式分解算法中不同初始中心频率的分解特性;利用分解特性对变分模式分解中使用的初始中心频率进行合理更新,在没有先验知识的情况下自适应分解信号的整个分析频带;根据峭度准则,从分解的子信号中选取包含故障信息最丰富的故障分量;对选出的最佳故障分量进行平衡参数优化和稀疏编码收缩处理,并进行包络分析;基于变分模式分解的特性,构建一套完整的基于收敛趋势变分模式分解的齿轮箱故障诊断方法,并应用诊断方法于汽车变速器齿轮箱中齿轮早期局部损伤故障识别和齿轮接触疲劳试验机中齿轮箱故障诊断。研究结果表明:在变分模式分解算法中存在着收敛趋势现象,随着初始中心频率的逐渐增大,所提取模式的收敛中心频率与其相对应的初始中心频率具有特定的收敛关系;提出的方法无需参数先验知识,可自适应地将振动信号进行分解;试验1中提出的方法分解得到的故障分量峭度为3.056,优化处理后故障分量的峭度为24.812,传统的2种初始化中心频率变分模式分解方法的故障分量最大峭度分别为2.830和2.421,快速谱峭度分析方法未能提取出故障分量;试验2中诊断方法分解得到的故障分量峭度为3.467,优化处理后故障分量的峭度为19.780,传统的2种初始化中心频率变分模式分解方法的故障分量最大峭度分别为3.231和3.361,快速谱峭度分析方法未能提取出故障分量;提出的方法能够增强瞬态特征和故障特征频率,在齿轮箱故障诊断方面更具准确性和优越性。

     

  • 图  1  仿真信号

    Figure  1.  Simulated signals

    图  2  仿真信号傅里叶频谱

    Figure  2.  Fourier spectra of simulated signals

    图  3  不同ICFs的VMD分解特性

    Figure  3.  Decomposition characteristics of VMD with different ICFs

    图  4  CFs与对应ICFs的比较

    Figure  4.  Comparison between CFs and their corresponding ICFs

    图  5  基于收敛趋势VMD的齿轮箱故障诊断方法的流程

    Figure  5.  Flow of gearbox fault diagnosis method based on convergent trend-guided VMD

    图  6  齿轮箱试验装置

    Figure  6.  Experimental rig of gearbox

    图  7  从齿轮箱测量的试验信号

    Figure  7.  Measured experimental signals from gearbox

    图  8  用所提出的方法提取的4个模式分量

    Figure  8.  Four mode components extracted by proposed method

    图  9  本文方法提取的4个模式的峭度

    Figure  9.  Kurtosis of 4 modes extracted by proposed method

    图  10  Kurtosis of 4 modes extracted by proposed method

    Figure  10.  Analysis results of optimal mode M2 obtained by proposed method

    图  11  图 7(a)试验信号的快速谱峭度分析结果

    Figure  11.  Results of experimental signal in Fig. 7(a) analyzed by fast spectral kurtosis analysis

    图  12  采用不同初始化ICF方式的传统VMD对图 7(a)试验信号的分析结果

    Figure  12.  Results of experimental signal in Fig. 7(a) analyzed by conventional VMD with different initialization ways of ICF

    图  13  零初始化ICF的传统VMD提取的M3、M4的包络谱

    Figure  13.  Envelope spectra of M3 and M4 extracted by conventional VMD with zero initialization of ICF

    图  14  试验装置结构

    Figure  14.  Structure of experimental rig

    图  15  测量的试验信号波形

    Figure  15.  Waveforms of measured experimental signal

    图  16  用所提出的方法提取的2个模式

    Figure  16.  Two modes extracted by proposed method

    图  17  本文方法提取的2个模式的峭度

    Figure  17.  Kurtosis of 2 modes extracted by proposed method

    图  18  本文方法所得最优模式M1的分析结果

    Figure  18.  Results of optimal mode M1 analyzed by proposed method

    图  19  图 15(a)试验信号的快速谱峭度分析结果

    Figure  19.  Results of experimental signal in Fig. 15(a) analyzed by fast spectral kurtosis analysis

    图  20  采用不同初始化ICF方式的传统VMD对图 15(a)试验信号的分析结果

    Figure  20.  Results of experimental signal in Fig. 15(a) analyzed by conventional VMD with different initialization ways of ICF

    图  21  均匀间隔分布中心频率的传统VMD提取的M1、M2的包络谱

    Figure  21.  Envelope spectra of M1 and M2 extracted by conventional VMD with uniformly spaced distribution center frequency

    图  22  零初始化中心频率的传统VMD提取的M1~M3的包络谱

    Figure  22.  Envelope spectra of M1-M3 extracted by conventional VMD with zero initialization of ICF

  • [1] 陈仁金, 蒋涛, 任德均, 等. 工程车辆变速器故障诊断与监视系统研究[J]. 工程机械, 2013, 44(3): 12-15. doi: 10.3969/j.issn.1000-1212.2013.03.004

    CHEN Ren-jing, JIANG Tao, REN De-jun, et al. Diagnosis of transmission failure and research of monitor system for construction vehicles[J]. Construction Machinery and Equipment, 2013, 44(3): 12-15. (in Chinese) doi: 10.3969/j.issn.1000-1212.2013.03.004
    [2] 江星星. 齿轮箱关键部件非平稳振动信号分析及诊断方法研究[D]. 南京: 南京航空航天大学, 2016.

    JIANG Xing-xing. Research on the nonstationary vibration signal of key parts of gearbox and its fault diagnosis method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
    [3] CUI Ling-li, HUANG Jin-feng, ZHANG Fei-bin. Quantitative and localization diagnosis of a defective ball bearing based on vertical-horizontal synchronization signal analysis[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11): 8695-8706. doi: 10.1109/TIE.2017.2698359
    [4] OSORIO SANTANDER E J, SILVA NETO S F, VAZ L A, et al. Using spectral kurtosis for selection of the frequency bandwidth containing the fault signature in rolling bearings[J]. Marine Systems and Ocean Technology, 2020, 15(4): 243-252. doi: 10.1007/s40868-020-00084-2
    [5] MOSHREFZADEH A, FASANA A, ANTONI J. The spectral amplitude modulation: a nonlinear filtering process for diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2019, 132: 253-276. doi: 10.1016/j.ymssp.2019.06.030
    [6] WU Ke-lin, XING Yun, CHU Ning, et al. A carrier wave extraction method for cavitation characterization based on time synchronous average and time-frequency analysis[J]. Journal of Sound and Vibration, 2020, 489: 115682. doi: 10.1016/j.jsv.2020.115682
    [7] CHEN Zhao, SUN Hao. Sparse representation for damage identification of structural systems[J]. Structural Health Monitoring, 2020, DOI: 10.1177/1475921720926970.
    [8] FENG Z P, ZHANG D, ZUO M J. Adaptive mode decomposition methods and their applications in signal analysis for machinery fault diagnosis: a review with examples[J]. IEEE Access, 2017, 5: 24301-24331. doi: 10.1109/ACCESS.2017.2766232
    [9] 郑近德, 潘海洋, 程军圣, 等. 基于自适应经验傅里叶分解的机械故障诊断方法[J]. 机械工程学报, 2020, 56(9): 125-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202009015.htm

    ZHENG Jin-de, PAN Hai-yang, CHENG Jun-sheng, et al. Adaptive empirical fourier decomposition based mechanical fault diagnosis method[J]. Journal of Mechanical Engineering, 2020, 56(9): 125-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202009015.htm
    [10] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. doi: 10.1098/rspa.1998.0193
    [11] 赵阳阳, 夏亮, 江欣国. 基于经验模态分解与长短时记忆神经网络的短时地铁客流预测模型[J]. 交通运输工程学报, 2020, 20(4): 194-204. doi: 10.19818/j.cnki.1671-1637.2020.04.016

    ZHAO Yang-yang, XIA Liang, JIANG Xin-guo. Short-term metro passenger flow prediction based on EMD-LSTM[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 194-204. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.016
    [12] 彭丹丹, 刘志亮, 靳亚强, 等. 基于软筛分停止准则的改进经验模态分解及其在旋转机械故障诊断中的应用[J]. 机械工程学报, 2019, 55(10): 122-132. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201910014.htm

    PENG Dan-dan, LIU Zhi-liang, JIN Ya-qiang, et al. Improved EMD with a soft sifting stopping criterion and its application to fault diagnosis of rotating machinery[J]. Journal of Mechanical Engineering, 2019, 55(10): 122-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201910014.htm
    [13] SMITH J S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface, 2005, 2(5): 443-454. doi: 10.1098/rsif.2005.0058
    [14] FREI M G, OSORIO I. Intrinsic time-scale decomposition: time-frequency-energy analysis and real-time filtering of non-stationary signals[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 463(2078): 321-342. doi: 10.1098/rspa.2006.1761
    [15] ZHENG Jin-de, CHENG Jun-sheng, YANG Yu. A rolling bearing fault diagnosis approach based on LCD and fuzzy entropy[J]. Mechanism and Machine Theory, 2013, 70: 441-453. doi: 10.1016/j.mechmachtheory.2013.08.014
    [16] GILLES J. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013, 61(16): 3999-4010. doi: 10.1109/TSP.2013.2265222
    [17] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. doi: 10.1109/TSP.2013.2288675
    [18] ZHAO Xin-long, WU Peng-fei, YIN Xiu-xing. A quadratic penalty item optimal variational mode decomposition method based on single-objective salp swarm algorithm[J]. Mechanical Systems and Signal Processing, 2020, 138: 106567. doi: 10.1016/j.ymssp.2019.106567
    [19] 刘尚坤, 唐贵基, 王晓龙. 基于改进变分模态分解的旋转机械故障时频分析方法[J]. 振动工程学报, 2016, 29(6): 1119-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201606022.htm

    LIU Shang-kun, TANG Gui-ji, WANG Xiao-long. Time frequency analysis method for rotary mechanical fault based on improved variational mode decomposition[J]. Journal of Vibration Engineering, 2016, 29(6): 1119-1126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201606022.htm
    [20] JIANG Xing-xing, WANG Jun, SHI Juan-juan, et al. A coarse-to-fine decomposing strategy of VMD for extraction of weak repetitive transients in fault diagnosis of rotating machines[J]. Mechanical Systems and Signal Processing, 2019, 116: 668-692. doi: 10.1016/j.ymssp.2018.07.014
    [21] LIAN Ji-jian, LYU Zhuo, WANG Hai-jun, et al. Adaptive variational mode decomposition method for signal processing based on mode characteristic[J]. Mechanical Systems and Signal Processing, 2018, 107: 53-77. doi: 10.1016/j.ymssp.2018.01.019
    [22] YI Can-can, LYU Yong, DANG Zhang. A fault diagnosis scheme for rolling bearing based on particle swarm optimization in variational mode decomposition[J]. Shock and Vibration, 2016, DOI: 10.1155/2016/9372691.
    [23] 马洪斌, 佟庆彬, 张亚男. 优化参数的变分模态分解在滚动轴承故障诊断中的应用[J]. 中国机械工程, 2018, 29(4): 390-397. doi: 10.3969/j.issn.1004-132X.2018.04.003

    MA Hong-bin, TONG Qing-bin, ZHANG Ya-nan. Applications of optimization parameters VMD to fault diagnosis of rolling bearings[J]. China Mechanical Engineering, 2018, 29(4): 390-397. (in Chinese) doi: 10.3969/j.issn.1004-132X.2018.04.003
    [24] JIANG Xing-xing, SHEN Chang-qing, SHI Juan-juan, et al. Initial center frequency-guided VMD for fault diagnosis of rotating machines[J]. Journal of Sound and Vibration, 2018, 435: 36-55. doi: 10.1016/j.jsv.2018.07.039
    [25] 唐贵基, 王晓龙. 最大相关峭度解卷积结合稀疏编码收缩的齿轮微弱故障特征提取[J]. 振动工程学报, 2015, 28(3): 478-486. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201503020.htm

    TANG Gui-ji, WANG Xiao-long. Weak feature extraction of gear fault based on maximum correlated kurtosis deconvolution and sparse code shrinkage[J]. Journal of Vibration Engineering, 2015, 28(3): 478-486. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201503020.htm
    [26] HYVARINEN A. Sparse code shrinkage: denoising of nonGaussian data by maximum likelihood estimation[J]. Neural Computation, 1999, 11(7): 1739-1768. doi: 10.1162/089976699300016214
    [27] ROCKAFELLAR R T. A dual approach to solving nonlinear programming problems by unconstrained optimization[J]. Mathematical Programming, 1973, 5(1): 354-373. doi: 10.1007/BF01580138
    [28] 李继猛, 张金凤, 张云刚, 等. 基于自适应随机共振和稀疏编码收缩算法的齿轮故障诊断方法[J]. 中国机械工程, 2016, 27(13): 1796-1801. doi: 10.3969/j.issn.1004-132X.2016.13.018

    LI Ji-meng, ZHANG Jin-feng, ZHANG Yun-gang, et al. Fault diagnosis of gears based on adaptive stochastic resonance and sparse code shrinkage algorithm[J]. China Mechanical Engineering, 2016, 27(13): 1796-1801. (in Chinese) doi: 10.3969/j.issn.1004-132X.2016.13.018
    [29] FAN Wei, CAI Gai-gai, ZHU Zhong-kui, et al. Sparse representation of transients in wavelet basis and its application in gearbox fault feature extraction[J]. Mechanical Systems and Signal Processing, 2015, 56/57: 230-245. doi: 10.1016/j.ymssp.2014.10.016
    [30] XIANG Shen, QIN Yi, ZHU Cai-chao, et al. Long short-term memory neural network with weight amplification and its application into gear remaining useful life prediction[J]. Engineering Applications of Artificial Intelligence, 2020, 91: 103587. doi: 10.1016/j.engappai.2020.103587
  • 加载中
图(22)
计量
  • 文章访问数:  958
  • HTML全文浏览量:  320
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-02
  • 刊出日期:  2022-02-25

目录

    /

    返回文章
    返回