Gearbox fault diagnosis method based on convergent trend-guided variational mode decomposition
-
摘要: 从中心频率的角度出发,深入分析变分模式分解算法中不同初始中心频率的分解特性;利用分解特性对变分模式分解中使用的初始中心频率进行合理更新,在没有先验知识的情况下自适应分解信号的整个分析频带;根据峭度准则,从分解的子信号中选取包含故障信息最丰富的故障分量;对选出的最佳故障分量进行平衡参数优化和稀疏编码收缩处理,并进行包络分析;基于变分模式分解的特性,构建一套完整的基于收敛趋势变分模式分解的齿轮箱故障诊断方法,并应用诊断方法于汽车变速器齿轮箱中齿轮早期局部损伤故障识别和齿轮接触疲劳试验机中齿轮箱故障诊断。研究结果表明:在变分模式分解算法中存在着收敛趋势现象,随着初始中心频率的逐渐增大,所提取模式的收敛中心频率与其相对应的初始中心频率具有特定的收敛关系;提出的方法无需参数先验知识,可自适应地将振动信号进行分解;试验1中提出的方法分解得到的故障分量峭度为3.056,优化处理后故障分量的峭度为24.812,传统的2种初始化中心频率变分模式分解方法的故障分量最大峭度分别为2.830和2.421,快速谱峭度分析方法未能提取出故障分量;试验2中诊断方法分解得到的故障分量峭度为3.467,优化处理后故障分量的峭度为19.780,传统的2种初始化中心频率变分模式分解方法的故障分量最大峭度分别为3.231和3.361,快速谱峭度分析方法未能提取出故障分量;提出的方法能够增强瞬态特征和故障特征频率,在齿轮箱故障诊断方面更具准确性和优越性。Abstract: From the perspective of the center frequency, the decomposition characteristics of different initial center frequencies in the variational mode decomposition algorithm were deeply analyzed. Making use of the decomposition characteristics, the initial center frequencies used in the variational mode decomposition were reasonably updated, without the prior knowledge, the entire analysis frequency band of the signal was adaptively decomposed. According to the kurtosis criterion, the fault component with the most abundant fault information was selected from the decomposed sub-signals. Envelope analysis was performed on the optimal fault component which has been processed by the balance parameter optimization and sparse code shrinkage. Based on the decomposition characteristics of variational mode, a complete gearbox fault diagnosis method was constructed based on the convergent trend-guided variational mode decomposition, and the diagnosis method was applied to the early local damage fault identification of gears in automobile transmission gearboxes and fault diagnosis of gearboxes in contact fatigue testing machines. Research results show that there is a convergent trend phenomenon in the variational mode decomposition algorithm. With the gradual increase of the initial center frequency, the convergent center frequency of the extracted mode has a specific convergent relationship with its corresponding initial center frequency. The proposed method can decompose the vibration signal adaptively without the prior knowledge of parameters. In experiment 1, the kurtosis of the fault component obtained by the proposed method is 3.056, and the kurtosis of the fault component after optimization is 24.812. The maximum kurtosis of the fault component in the traditional variational mode decomposition with two different ways for initializing the center frequency is 2.830 and 2.421, respectively. The fast spectral kurtosis analysis method fails to extract the fault component. In experiment 2, the kurtosis of fault component obtained by the proposed method is 3.467, and the kurtosis of the fault component after optimization is 19.780. The maximum kurtosis of the fault component in the traditional variational mode decomposition with two different ways for initializing the center frequency is 3.231 and 3.361, respectively. The fast spectral kurtosis analysis method fails to extract the fault components. The proposed method can enhance the transient characteristics and fault characteristic frequencies, and is more accurate and superior in the gearbox fault diagnosis. 22 figs, 30 refs.
-
图 19 图 15(a)试验信号的快速谱峭度分析结果
Figure 19. Results of experimental signal in Fig. 15(a) analyzed by fast spectral kurtosis analysis
图 20 采用不同初始化ICF方式的传统VMD对图 15(a)试验信号的分析结果
Figure 20. Results of experimental signal in Fig. 15(a) analyzed by conventional VMD with different initialization ways of ICF
-
[1] 陈仁金, 蒋涛, 任德均, 等. 工程车辆变速器故障诊断与监视系统研究[J]. 工程机械, 2013, 44(3): 12-15. doi: 10.3969/j.issn.1000-1212.2013.03.004CHEN Ren-jing, JIANG Tao, REN De-jun, et al. Diagnosis of transmission failure and research of monitor system for construction vehicles[J]. Construction Machinery and Equipment, 2013, 44(3): 12-15. (in Chinese) doi: 10.3969/j.issn.1000-1212.2013.03.004 [2] 江星星. 齿轮箱关键部件非平稳振动信号分析及诊断方法研究[D]. 南京: 南京航空航天大学, 2016.JIANG Xing-xing. Research on the nonstationary vibration signal of key parts of gearbox and its fault diagnosis method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese) [3] CUI Ling-li, HUANG Jin-feng, ZHANG Fei-bin. Quantitative and localization diagnosis of a defective ball bearing based on vertical-horizontal synchronization signal analysis[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11): 8695-8706. doi: 10.1109/TIE.2017.2698359 [4] OSORIO SANTANDER E J, SILVA NETO S F, VAZ L A, et al. Using spectral kurtosis for selection of the frequency bandwidth containing the fault signature in rolling bearings[J]. Marine Systems and Ocean Technology, 2020, 15(4): 243-252. doi: 10.1007/s40868-020-00084-2 [5] MOSHREFZADEH A, FASANA A, ANTONI J. The spectral amplitude modulation: a nonlinear filtering process for diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2019, 132: 253-276. doi: 10.1016/j.ymssp.2019.06.030 [6] WU Ke-lin, XING Yun, CHU Ning, et al. A carrier wave extraction method for cavitation characterization based on time synchronous average and time-frequency analysis[J]. Journal of Sound and Vibration, 2020, 489: 115682. doi: 10.1016/j.jsv.2020.115682 [7] CHEN Zhao, SUN Hao. Sparse representation for damage identification of structural systems[J]. Structural Health Monitoring, 2020, DOI: 10.1177/1475921720926970. [8] FENG Z P, ZHANG D, ZUO M J. Adaptive mode decomposition methods and their applications in signal analysis for machinery fault diagnosis: a review with examples[J]. IEEE Access, 2017, 5: 24301-24331. doi: 10.1109/ACCESS.2017.2766232 [9] 郑近德, 潘海洋, 程军圣, 等. 基于自适应经验傅里叶分解的机械故障诊断方法[J]. 机械工程学报, 2020, 56(9): 125-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202009015.htmZHENG Jin-de, PAN Hai-yang, CHENG Jun-sheng, et al. Adaptive empirical fourier decomposition based mechanical fault diagnosis method[J]. Journal of Mechanical Engineering, 2020, 56(9): 125-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202009015.htm [10] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. doi: 10.1098/rspa.1998.0193 [11] 赵阳阳, 夏亮, 江欣国. 基于经验模态分解与长短时记忆神经网络的短时地铁客流预测模型[J]. 交通运输工程学报, 2020, 20(4): 194-204. doi: 10.19818/j.cnki.1671-1637.2020.04.016ZHAO Yang-yang, XIA Liang, JIANG Xin-guo. Short-term metro passenger flow prediction based on EMD-LSTM[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 194-204. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.016 [12] 彭丹丹, 刘志亮, 靳亚强, 等. 基于软筛分停止准则的改进经验模态分解及其在旋转机械故障诊断中的应用[J]. 机械工程学报, 2019, 55(10): 122-132. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201910014.htmPENG Dan-dan, LIU Zhi-liang, JIN Ya-qiang, et al. Improved EMD with a soft sifting stopping criterion and its application to fault diagnosis of rotating machinery[J]. Journal of Mechanical Engineering, 2019, 55(10): 122-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201910014.htm [13] SMITH J S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface, 2005, 2(5): 443-454. doi: 10.1098/rsif.2005.0058 [14] FREI M G, OSORIO I. Intrinsic time-scale decomposition: time-frequency-energy analysis and real-time filtering of non-stationary signals[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 463(2078): 321-342. doi: 10.1098/rspa.2006.1761 [15] ZHENG Jin-de, CHENG Jun-sheng, YANG Yu. A rolling bearing fault diagnosis approach based on LCD and fuzzy entropy[J]. Mechanism and Machine Theory, 2013, 70: 441-453. doi: 10.1016/j.mechmachtheory.2013.08.014 [16] GILLES J. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013, 61(16): 3999-4010. doi: 10.1109/TSP.2013.2265222 [17] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. doi: 10.1109/TSP.2013.2288675 [18] ZHAO Xin-long, WU Peng-fei, YIN Xiu-xing. A quadratic penalty item optimal variational mode decomposition method based on single-objective salp swarm algorithm[J]. Mechanical Systems and Signal Processing, 2020, 138: 106567. doi: 10.1016/j.ymssp.2019.106567 [19] 刘尚坤, 唐贵基, 王晓龙. 基于改进变分模态分解的旋转机械故障时频分析方法[J]. 振动工程学报, 2016, 29(6): 1119-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201606022.htmLIU Shang-kun, TANG Gui-ji, WANG Xiao-long. Time frequency analysis method for rotary mechanical fault based on improved variational mode decomposition[J]. Journal of Vibration Engineering, 2016, 29(6): 1119-1126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201606022.htm [20] JIANG Xing-xing, WANG Jun, SHI Juan-juan, et al. A coarse-to-fine decomposing strategy of VMD for extraction of weak repetitive transients in fault diagnosis of rotating machines[J]. Mechanical Systems and Signal Processing, 2019, 116: 668-692. doi: 10.1016/j.ymssp.2018.07.014 [21] LIAN Ji-jian, LYU Zhuo, WANG Hai-jun, et al. Adaptive variational mode decomposition method for signal processing based on mode characteristic[J]. Mechanical Systems and Signal Processing, 2018, 107: 53-77. doi: 10.1016/j.ymssp.2018.01.019 [22] YI Can-can, LYU Yong, DANG Zhang. A fault diagnosis scheme for rolling bearing based on particle swarm optimization in variational mode decomposition[J]. Shock and Vibration, 2016, DOI: 10.1155/2016/9372691. [23] 马洪斌, 佟庆彬, 张亚男. 优化参数的变分模态分解在滚动轴承故障诊断中的应用[J]. 中国机械工程, 2018, 29(4): 390-397. doi: 10.3969/j.issn.1004-132X.2018.04.003MA Hong-bin, TONG Qing-bin, ZHANG Ya-nan. Applications of optimization parameters VMD to fault diagnosis of rolling bearings[J]. China Mechanical Engineering, 2018, 29(4): 390-397. (in Chinese) doi: 10.3969/j.issn.1004-132X.2018.04.003 [24] JIANG Xing-xing, SHEN Chang-qing, SHI Juan-juan, et al. Initial center frequency-guided VMD for fault diagnosis of rotating machines[J]. Journal of Sound and Vibration, 2018, 435: 36-55. doi: 10.1016/j.jsv.2018.07.039 [25] 唐贵基, 王晓龙. 最大相关峭度解卷积结合稀疏编码收缩的齿轮微弱故障特征提取[J]. 振动工程学报, 2015, 28(3): 478-486. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201503020.htmTANG Gui-ji, WANG Xiao-long. Weak feature extraction of gear fault based on maximum correlated kurtosis deconvolution and sparse code shrinkage[J]. Journal of Vibration Engineering, 2015, 28(3): 478-486. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201503020.htm [26] HYVARINEN A. Sparse code shrinkage: denoising of nonGaussian data by maximum likelihood estimation[J]. Neural Computation, 1999, 11(7): 1739-1768. doi: 10.1162/089976699300016214 [27] ROCKAFELLAR R T. A dual approach to solving nonlinear programming problems by unconstrained optimization[J]. Mathematical Programming, 1973, 5(1): 354-373. doi: 10.1007/BF01580138 [28] 李继猛, 张金凤, 张云刚, 等. 基于自适应随机共振和稀疏编码收缩算法的齿轮故障诊断方法[J]. 中国机械工程, 2016, 27(13): 1796-1801. doi: 10.3969/j.issn.1004-132X.2016.13.018LI Ji-meng, ZHANG Jin-feng, ZHANG Yun-gang, et al. Fault diagnosis of gears based on adaptive stochastic resonance and sparse code shrinkage algorithm[J]. China Mechanical Engineering, 2016, 27(13): 1796-1801. (in Chinese) doi: 10.3969/j.issn.1004-132X.2016.13.018 [29] FAN Wei, CAI Gai-gai, ZHU Zhong-kui, et al. Sparse representation of transients in wavelet basis and its application in gearbox fault feature extraction[J]. Mechanical Systems and Signal Processing, 2015, 56/57: 230-245. doi: 10.1016/j.ymssp.2014.10.016 [30] XIANG Shen, QIN Yi, ZHU Cai-chao, et al. Long short-term memory neural network with weight amplification and its application into gear remaining useful life prediction[J]. Engineering Applications of Artificial Intelligence, 2020, 91: 103587. doi: 10.1016/j.engappai.2020.103587