留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

下承式拱桥合理拱轴线的解析解与计算方法

张国靖 刘永健 刘江

张国靖, 刘永健, 刘江. 下承式拱桥合理拱轴线的解析解与计算方法[J]. 交通运输工程学报, 2022, 22(5): 217-230. doi: 10.19818/j.cnki.1671-1637.2022.05.013
引用本文: 张国靖, 刘永健, 刘江. 下承式拱桥合理拱轴线的解析解与计算方法[J]. 交通运输工程学报, 2022, 22(5): 217-230. doi: 10.19818/j.cnki.1671-1637.2022.05.013
ZHANG Guo-jing, LIU Yong-jian, LIU Jiang. Analytical solution and calculation method of reasonable arch axis of through arch bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 217-230. doi: 10.19818/j.cnki.1671-1637.2022.05.013
Citation: ZHANG Guo-jing, LIU Yong-jian, LIU Jiang. Analytical solution and calculation method of reasonable arch axis of through arch bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 217-230. doi: 10.19818/j.cnki.1671-1637.2022.05.013

下承式拱桥合理拱轴线的解析解与计算方法

doi: 10.19818/j.cnki.1671-1637.2022.05.013
基金项目: 

国家重点研发计划 2016YFC0701202

国家自然科学基金项目 51178051

中央高校基本科研业务费专项资金项目 300102219310

详细信息
    作者简介:

    张国靖(1992-),男,陕西榆林人,长安大学工学博士研究生,从事大跨桥梁结构研究

    通讯作者:

    刘永健(1966-),男,江西玉山人,长安大学教授,工学博士

  • 中图分类号: U442.5

Analytical solution and calculation method of reasonable arch axis of through arch bridge

Funds: 

National Key Research and Development Program of China 2016YFC0701202

National Natural Science Foundation of China 51178051

Fundamental Research Funds for the Central Universities 300102219310

More Information
  • 摘要: 为了得到下承式拱桥合理拱轴线的解析解与计算方法,建立了恒载作用模式和合理拱轴线微分方程,得到合理拱轴线的解析解;在解析解的基础上,定义了主拱恒载占比系数,得到了基于矢跨比和主拱恒载占比系数的合理拱轴线快速求解计算方法;采用拱桥设计规范、工程案例与相关研究成果,验证了本文方法的可靠性。研究结果表明:下承式拱桥的恒载作用模式可等效为连续均布恒载+主拱恒载的形式,合理拱轴线为悬链线,相应的拱轴系数由矢跨比和主拱恒载占比系数共同决定;拟合出的不同矢跨比下的拱轴系数与主拱恒载占比系数的函数关系式为线性相关关系,决定系数大于0.99,说明拟合公式准确;工程中下承式拱桥矢跨比范围为1/3~1/8,相应的拱轴系数范围为1.000~1.792,常见的矢跨比范围为1/4~1/5,相应的拱轴系数范围为1.000~1.465,与工程案例中拱轴系数统计结果的吻合度较高,说明计算结果可靠;工程中常见主拱恒载占比系数范围为0.1~0.5,对应的拱轴系数范围为1.102~1.364,与拱桥设计规范中的取值范围接近,证明了规范取值的合理性;当主拱恒载占比系数小于0.5且矢跨比小于1/7,或主拱恒载占比系数小于0.1时,拱轴系数接近于1.000,即合理拱轴线可采用二次抛物线;利用查表法或简化公式法,可以快速求得合理拱轴线方程;与已有研究成果相比较,主拱截面弯矩、偏心距和偏心距平方和的偏差均在5%以内,证明了本文计算方法的正确性。

     

  • 图  1  下承式拱桥结构组成与恒载传递路径

    Figure  1.  Structure composition and dead load transfer path of through arch bridge

    图  2  下承式拱桥恒载分布

    Figure  2.  Dead load distribution of through arch bridge

    图  3  集中力连续化

    Figure  3.  Continuous change of concentrated loads

    图  4  下承式拱桥恒载作用模式与计算参数

    Figure  4.  Dead load mode and calculation parameters of through arch bridge

    图  5  合理拱轴线计算参数与平衡隔离体

    Figure  5.  Calculation parameters and balanced isolator of reasonable arch axis

    图  6  合理拱轴线迭代计算流程

    Figure  6.  Iterative calculation process of reasonable arch axis

    图  7  mλf/L的变化规律

    Figure  7.  Variation laws of m with λ and f/L

    图  8  矢跨比统计结果

    Figure  8.  Statistical results of rise-span ratios

    图  9  下承式拱桥拱轴系数统计结果

    Figure  9.  Arch axis coefficients statistical results of through arch bridges

    图  10  拱轴系数对比

    Figure  10.  Comparison of arch axis coefficients

    图  11  合理拱轴线快速求解流程

    Figure  11.  Flow chart of quick solution of reasonable arch axis

    图  12  拱桥概况

    Figure  12.  Overview of arch bridge

    图  13  恒载分布模式与计算参数

    Figure  13.  Dead load distribution modes and calculation parameters

    图  14  合理拱轴线求解结果比较

    Figure  14.  Comparison of solution results of reasonable arch axis

    图  15  三铰拱弯矩和偏心距比较

    Figure  15.  Comparison of bending moments and eccentricities of three-hinged arch

    图  16  无铰拱弯矩和偏心距比较

    Figure  16.  Comparison of bending moments and eccentricities of hingless arch

    图  17  拱轴线偏心距平方和比较

    Figure  17.  Comparison of square sums of eccentricities of arch axis

    表  1  十座拱桥λ的统计结果

    Table  1.   λ statistical results of 10 arch bridges

    序号 结构型式 跨径/m 桥宽/m 矢跨比 截面型式 桥道结构 桥道梁跨径/m 主拱恒载占比系数
    1 钢管混凝土拱桥 46.0 18.0 1/3 单圆管型 钢筋混凝土结构 4.0 0.119
    2 钢管混凝土拱桥 75.0 18.0 1/5 哑铃型 钢筋混凝土结构 4.7 0.176
    3 钢管混凝土拱桥 95.5 22.4 2/9 哑铃型 钢筋混凝土结构 7.1 0.316
    4 钢管混凝土拱桥 100.0 5.5 1/5 哑铃型 钢筋混凝土结构 4.1 0.251
    5 钢箱拱桥 118.0 39.4 1/4 箱型 钢-混组合结构 6.0 0.110
    6 钢管混凝土拱桥 136.0 11.5 1/5 桁架型 钢筋混凝土结构 8.1 0.352
    7 钢管混凝土拱桥 150.0 23.5 2/9 桁架型 钢筋混凝土结构 8.0 0.431
    8 钢筋混凝土拱桥 280.0 26.0 1/5 箱型 钢筋混凝土结构 12.0 0.485
    9 钢管混凝土拱桥 300.0 24.0 2/11 桁架型 钢筋混凝土结构 10.0 0.337
    10 钢桁拱桥 390.0 12.0 2/9 桁架型 钢-混组合结构 12.0 0.459
    下载: 导出CSV

    表  2  拱轴系数计算结果

    Table  2.   Calculation results of arch axis coefficients

    主拱恒载占比系数 矢跨比
    1/3 1/4 1/5 1/6 1/7 1/8
    0.0 1.000 1.000 1.000 1.000 1.000 1.000
    0.1 1.068 1.042 1.028 1.020 1.015 1.012
    0.2 1.138 1.085 1.057 1.041 1.031 1.024
    0.3 1.211 1.129 1.086 1.062 1.046 1.036
    0.4 1.286 1.174 1.116 1.083 1.062 1.048
    0.5 1.364 1.220 1.146 1.104 1.078 1.060
    0.6 1.444 1.267 1.177 1.126 1.094 1.072
    0.7 1.527 1.315 1.208 1.148 1.110 1.085
    0.8 1.612 1.364 1.240 1.170 1.126 1.097
    0.9 1.701 1.414 1.272 1.192 1.143 1.110
    1.0 1.792 1.465 1.305 1.215 1.159 1.123
    下载: 导出CSV

    表  3  十座拱桥拱轴系数计算结果

    Table  3.   Calculation results of arch axis coefficients of 10 arch bridges

    序号 跨径/m 矢跨比 主拱恒载占比系数 本文计算拱轴系数 原设计拱轴系数 拱轴系数偏差
    1 46 1/3 0.119 1.075 1.000 -0.075
    2 75 1/5 0.176 1.050 1.000 -0.050
    3 96 2/9 0.316 1.116 1.347 0.231
    4 100 1/5 0.251 1.073 1.167 0.094
    5 118 1/4 0.110 1.044 1.100 0.056
    6 136 1/5 0.352 1.103 1.167 0.064
    7 150 2/9 0.431 1.160 1.167 0.007
    8 280 1/5 0.485 1.144 1.167 0.023
    9 300 2/11 0.337 1.085 1.100 0.015
    10 390 2/9 0.459 1.171 1.200 0.029
    下载: 导出CSV

    表  4  不同f/Lλm的关系式拟合结果

    Table  4.   Fitting results of relationships between λ and m under different rise-span ratios

    矢跨比 拟合公式 决定系数 公式编号
    1/3 m=0.791 3λ+0.981 0 0.997 9 (22)
    1/4 m=0.465 0λ+0.992 5 0.999 1 (23)
    1/5 m=0.305 0λ+0.996 1 0.999 5 (24)
    1/6 m=0.215 0λ+0.998 0 0.999 7 (25)
    1/7 m=0.159 3λ+0.998 9 0.999 9 (26)
    1/8 m=0.122 5λ+0.998 9 0.999 9 (27)
    下载: 导出CSV

    表  5  拱轴线坐标

    Table  5.   Arch axis coordinates

    水平向坐标/m 竖向坐标/m 水平向坐标/m 竖向坐标/m
    0.000 0.000 39.000 8.010
    3.000 0.048 42.000 9.297
    6.000 0.190 45.000 10.681
    9.000 0.426 48.000 12.164
    12.000 0.757 51.000 13.744
    15.000 1.179 54.000 15.422
    18.000 1.671 57.000 17.202
    21.000 2.316 60.000 19.081
    24.000 3.026 63.000 21.061
    27.000 3.831 66.000 23.143
    30.000 4.731 69.000 25.327
    33.000 5.727 72.000 27.614
    36.000 6.820 75.000 30.000
    下载: 导出CSV

    表  6  最大弯矩和最大偏心距计算结果

    Table  6.   Calculation results of maximum bending moments and maximum eccentricities

    方法 三铰拱 无铰拱
    最大弯矩/(kN·m) 最大偏心距/m 最大弯矩/(kN·m) 最大偏心距/m 偏心距平方和/m2
    本文方法 17.5 -0.002 -1 455.3 0.112 0.182
    五点重合法 345.7 -0.030 -1 739.3 0.134 0.196
    唐春艳[19]的方法 -39.0 0.003 -1 415.0 0.109 0.186
    任伟新等[17]的方法 -23.6 0.002 -1 429.7 0.110 0.182
    Lewis[20]的方法 259.2 -0.021 -1 664.5 0.128 0.191
    二次抛物线法 1 571.5 -0.136 -2 785.9 0.215 0.256
    下载: 导出CSV

    表  7  六种求解方法的特点比较

    Table  7.   Characteristic comparison of 6 solution methods

    方法 计算精度 计算效率 计算难易程度 工程适用性 是否揭示了拱轴线的本质 拱桥初步设计阶段的适用性
    本文方法 容易 适用 适用
    五点重合法 较高 容易 较适用 较适用
    唐春艳[19]的方法 较高 容易 较适用 适用
    任伟新等[17]的方法 较高 较容易 适用 较适用
    Lewis[20]的方法 较高 较低 较难 较适用 不太适用
    二次抛物线法 容易 不适用 较适用
    下载: 导出CSV
  • [1] BLOCK P, DEJONG M, OCHSENDORF J. As hangs the flexible line: equilibrium of masonry arches[J]. Nexus Network Journal, 2006, 8(2): 13-24. doi: 10.1007/s00004-006-0015-9
    [2] LEWIS W J, RUSSELL J M, LI T Q. Moment-less arches for reduced stress state. Comparisons with conventional arch forms[J]. Computers and Structures, 2021, 251: 106524. doi: 10.1016/j.compstruc.2021.106524
    [3] NIKOLI AC'G D. Catenary arch of finite thickness as the optimal arch shape[J]. Structural and Multidisciplinary Optimization, 2019, 60(5): 1957-1966. doi: 10.1007/s00158-019-02304-9
    [4] 陈宝春, 刘君平. 世界拱桥建设与技术发展综述[J]. 交通运输工程学报, 2020, 20(1): 27-41. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001005.htm

    CHEN Bao-chun, LIU Jun-ping. Review of construction and technology development of arch bridges in the world[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 27-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001005.htm
    [5] ZHANG Guo-jing, LIU Yong-jian, ZHAO Wei, et al. Optimal arch shape of long-span open-spandrel arch bridges under vertical permanent loads[J]. Structures, 2022, 45: 1012-1030. doi: 10.1016/j.istruc.2022.09.086
    [6] 侯春辉, 宋顺心. 基于APDL语言的拱轴线优化及立柱布置研究[J]. 铁道工程学报, 2017, 34(10): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201710011.htm

    HOU Chun-hui, SONG Shun-xin. Research on the optimization of arch-axis and column layout based on APDL language[J]. Journal of Railway Engineering Society, 2017, 34(10): 55-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201710011.htm
    [7] 宰国军, 周志祥. 钢箱砼组合拱桥的拱轴线优化算法研究[J]. 土木建筑与环境工程, 2014, 36(S1): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN2014S1006.htm

    ZAI Guo-jun, ZHOU Zhi-xiang. Optimization algorithm research on the arch axis of steel box-concrete composite arch bridge[J]. Journal of Civil, Architectural and Environmental Engineering, 2014, 36(S1): 20-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN2014S1006.htm
    [8] 蒋启平. 三次样条插值确定拱桥合理拱轴线的方法探讨[J]. 武汉理工大学学报(交通科学与工程版), 2001, 25(1): 101-104. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ200101027.htm

    JIANG Qi-ping. A study of method of determining rational arch axis using three ordersplin interpolation[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2001, 25(1): 101-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ200101027.htm
    [9] 罗辉. 一种新型的拱轴线及拱圈优化设计[J]. 桥梁建设, 1997, 27(2): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS702.002.htm

    LUO Hui. Anew type of arch axis curve and optimization design of arch ring[J]. Bridge Construction, 1997, 27(2): 14-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS702.002.htm
    [10] ZHANG Xue-song, LIANG Ning-yi, LU Xiao-hong, et al. Optimization method for solving the reasonable arch axis of long-span CFST arch bridges[J]. Advances in Civil Engineering, 2019, 2019: 7235656.
    [11] 刘毓湘, 高敬红. 基于4次样条函数拱轴线优化设计的T-V求解法[J]. 公路交通科技, 2007, 24(6): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200706018.htm

    LIU Yu-xiang, GAO Jing-hong. Topkis-Veinott feasible direction method for optimum axis of arch bridge based on quartic spline function[J]. Journal of Highway and Transportation Research and Development, 2007, 24(6): 80-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200706018.htm
    [12] 范重, 胡纯炀, 刘先明, 等. 鄂尔多斯东胜体育场巨型拱索结构设计优化[J]. 建筑结构学报, 2016, 37(6): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201606002.htm

    FAN Zhong, HU Chun-yang, LIU Xian-ming, et al. Optimized design of giant arch-cable structure of the Ordos Dongsheng Stadium[J]. Journal of Building Structures, 2016, 37(6): 9-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201606002.htm
    [13] SHI Zhou, HU Hao, LI Jia-qi. Axis optimization of arch-shaped pylons for high-speed railway cable-stayed bridges[J]. Engineering Structures, 2021, 227: 111424.
    [14] NODARGI N A, BISEGNA P. Thrust line analysis revisited and applied to optimization of masonry arches[J]. International Journal of Mechanical Sciences, 2020, 179: 105690.
    [15] MICHIELS T, NAPOLITANO R, ADRIAENSSENS S, et al. Comparison of thrust line analysis, limit state analysis and distinct element modeling to predict the collapse load and collapse mechanism of a rammed earth arch[J]. Engineering Structures, 2017, 148: 145-156.
    [16] NIKOLICH D. Thrust line analysis of triangular arches[J]. Archive of Applied Mechanics, 2020, 90(9): 1861-1874.
    [17] 任伟新, 胡常福, 上官兴, 等. 空腹式拱桥新型拱轴线研究[J]. 交通科学与工程, 2010, 26(2): 26-30, 47. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJX201002006.htm

    REN Wei-xin, HU Chang-fu, SHANGGUAN Xing, et al. Research on new arch axis of open-spandrel arch bridge[J]. Journal of Transport Science and Engineering, 2010, 26(2): 26-30, 47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSJX201002006.htm
    [18] 胡常福, 廖妙星. 多源荷载作用下合理拱轴的近似解析[J]. 华东交通大学学报, 2018, 35(2): 46-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201802007.htm

    HU Chang-fu, LIAO Miao-xing. Approximate analytical solution for rational arch axis under multi-type loads[J]. Journal of East China Jiaotong University, 2018, 35(2): 46-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201802007.htm
    [19] 唐春艳. T构-系杆拱组合体系桥静力及动力性能研究[D]. 大连: 大连理工大学, 2018.

    TANG Chun-yan. Research on the static and dynamic characteristics of T-frame and tied arch composite bridge[D]. Dalian: Dalian University of Technology, 2018. (in Chinese)
    [20] LEWIS W J. Mathematical model of a moment-less arch[J]. Proceedings of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 2016, 472: 20160019.
    [21] GIL-MARTÍN L M, HERNÁNDEZ-MONTES E, PALOMARES A, et al. The optimum shape of an arch under non-symmetric loading conditions[J]. Archive of Applied Mechanics, 2016, 86(8): 1509-1520.
    [22] MARANO G C, TRENTADUE F, PETRONE F. Optimal arch shape solution under static vertical loads[J]. Acta Mechanica, 2014, 225(3): 679-686.
    [23] LEWIS W J. Constant stress arches and their design space[J]. Proceedings of the Royal Society A: Mathematical, Physical, and Engineering Sciences, 2022, 478: 20210428.
    [24] 陈宝春, 韦建刚, 周俊, 等. 我国钢管混凝土拱桥应用现状与展望[J]. 土木工程学报, 2017, 50(6): 50-61. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201706006.htm

    CHEN Bao-chun, WEI Jian-gang, ZHOU Jun, et al. Application of concrete-filled steel tube arch bridges in China: current status and prospects[J]. China Civil Engineering Journal, 2017, 50(6): 50-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201706006.htm
    [25] 易云焜. 梁拱组合体系设计理论关键问题研究[D]. 上海: 同济大学, 2007.

    YI Yun-kun. Key problem study for design theory of beam-arch association bridges[D]. Shanghai: Tongji University, 2007. (in Chinese)
    [26] SALONGA J, GAUVREAU P. Comparative study of the proportions, form, and efficiency of concrete arch bridges[J]. Journal of Bridge Engineering, 2014, 19(3): 04013010.
  • 加载中
图(17) / 表(7)
计量
  • 文章访问数:  808
  • HTML全文浏览量:  377
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-26
  • 刊出日期:  2022-10-25

目录

    /

    返回文章
    返回