Interfacial force transfer mechanism of concrete-filled steel tube based on field truss bridge test
-
摘要: 为分析钢管混凝土桁梁桥的承载性能和钢-混凝土组合作用机理,进行了桁梁上、下弦钢管混凝土界面传力行为实桥试验和全桥板壳-实体有限元参数分析;以主跨71 m的简支半穿式钢桁梁桥为依托,沿其上、下弦杆节间长度范围内共布设102个应变测点,测试并分析了加载车作用下钢管轴向应变分布和钢-混凝土界面传力特征;采用ABAQUS软件建立了试验桥板壳-实体有限元模型,经实测挠度与应变数据验证模型的可靠性后,进行了界面连接状态、界面抗剪刚度、钢管厚度、管内混凝土强度等对钢管混凝土界面传力性能的参数影响分析。分析结果表明:钢管轴向应变分布规律可反映钢管混凝土界面传力的基本特征;钢管混凝土桁架上、下弦杆节点区域均出现界面剪力不均匀分布现象,钢-混凝土界面有效传力范围内钢管轴向应变呈负指数函数分布,其他区域钢管轴向应变保持不变;完全脱黏的钢管混凝土桁架弦杆的钢管轴向应变在节点一定范围内呈二次抛物线函数分布;钢管轴向应变因界面连接状态所表现出的不同应变分布规律和剪力传递长度可用于评价钢管混凝土组合作用强弱和界面工作状态;桁架弦杆的剪力传递长度随钢管厚度和管内混凝土强度的增加而增大,钢管厚度的影响更显著;在钢管混凝土桁架弦杆内设置抗剪连接件可缩短剪力传递长度。Abstract: To analyze the bearing performance of concrete-filled steel tubular truss bridge and steel-concrete composite action mechanism, the field truss bridge test on the interfacial force transfer behavior of concrete-filled steel tubes for the upper and lower chords and the finite element parameter analysis of shell and solid elements of the bridge were carried out. On the basis of the simply-supported half-through steel truss bridge with a main span of 71 m, 102 strain measuring points were arranged within the joint range along the upper and lower chords. The characteristics of axial strain distributions of steel tubes and the interfacial force transfer between steel and concrete were tested and analyzed under the action of the loading vehicle. The software ABAQUS was used to build the finite element model for the shell and solid elements of the test bridge, and the model reliability was verified by the measured deflection and strain. After that, the influences of parameters such as the interfacial connection state, interfacial shear stiffness, steel tube thickness, and concrete strength in the tube on the interfacial force transfer performance of concrete-filled steel tubes were analyzed. Analysis results show that the axial strain distribution laws of steel tubes can reflect the basic characteristics of the interfacial force transfer of the concrete-filled steel tube. The uneven distributions of interfacial shear force are shown in the joint areas of the upper and lower chords of the concrete-filled steel tubular truss. The axial strain of steel tubes at the steel-concrete interfaces within the effective force transfer range is distributed as a negative exponential function. In other areas, it remains unchanged. For the fully de-bonded chords of the concrete-filled steel tubular truss, the axial strain distribution of steel tubes is a quadratic function in a certain range of joints. As a result, the different axial strain distribution laws of steel tubes due to the interface connection state and the shear transfer length can be used to evaluate the steel-concrete composite action strength and interfacial working state between the concrete and the steel tube. The shear transfer length of the truss chord becomes longer with the increases in the steel tube thickness and strength of concrete in the tube, but the influence of steel tube thickness is more significant. Setting shear connectors in the chord of concrete-filled steel tubular truss can shorten the shear transfer length.
-
表 1 试验桥参数
Table 1. Parameters of tested bridge
mm 名称 编号 截面形式 截面尺寸 长度(直径) 宽度 厚度 上弦杆 S 圆形钢管混凝土 1 000 24 下弦杆 X 方钢管混凝土 900 900 30 腹杆 F 圆形空钢管 700 700 26 端横梁 H1 矩形钢管混凝土 1 000 560 22 中横梁 H2 工字钢 上翼缘 450 20 下翼缘 700 45 腹板加劲肋 130 12 表 2 加载车实测轴重
Table 2. Measured weights of loading vehicles
车辆编号 轴距/m 轴重/kN 总重/kN 前轴 后轴 前轴 后轴 1 3.5 1.4 71.8 243.6 315.4 2 3.5 1.4 85.2 235.2 320.4 3 3.5 1.4 77.8 246.0 323.8 4 3.5 1.4 89.2 239.8 329.0 表 3 试验与模拟结果比较
Table 3. Comparison of test and simulation results
测试内容 试验值 模拟值 相对误差/% 跨中挠度/mm 11.69 10.62 9.15 上弦杆应变/10-4 1.41 1.31 7.09 下弦杆应变/10-4 1.82 1.72 5.49 -
[1] 韩林海, 牟廷敏, 王法承, 等. 钢管混凝土混合结构设计原理及其在桥梁工程中的应用[J]. 土木工程学报, 2020, 53(5): 1-24. doi: 10.15951/j.tmgcxb.20200413.001HAN Lin-hai, MU Ting-min, WANG Fa-cheng, et al. Design theory of CFST (concrete-filled steel tubular) mixed structures and its applications in bridge engineering[J]. China Civil Engineering Journal, 2020, 53(5): 1-24. (in Chinese) doi: 10.15951/j.tmgcxb.20200413.001 [2] 左雷彬, 马红昕, 铁明亮, 等. 油气管道斜拉索跨越设计[J]. 油气储运, 2015, 34(9): 1010-1014, 1026. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201509019.htmZUO Lei-bin, MA Hong-xin, TIE Ming-liang, et al. Design of cable-stayed aerial crossing for oil and gas pipeline[J]. Oil and Gas Storage and Transportation, 2015, 34(9): 1010-1014, 1026. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201509019.htm [3] 刘彬, 刘永健, 周绪红, 等. 中等跨径装配式矩形钢管混凝土组合桁梁桥设计[J]. 交通运输工程学报, 2017, 17(4): 20-31. doi: 10.3969/j.issn.1671-1637.2017.04.003LIU Bin, LIU Yong-jian, ZHOU Xu-hong, et al. Design of mid-span fabricated RCFST composite truss bridge[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 20-31. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.04.003 [4] 刘明辉, 韩冰, 朵君泰. 界面缺陷对钢管混凝土受弯构件抗弯性能影响研究[J]. 土木工程学报, 2019, 52(6): 55-66. doi: 10.15951/j.tmgcxb.2019.06.005LIU Ming-hui, HAN Bing, DUO Jun-tai. Investigation on the effect of interface imperfection on the flexural behaviors of concrete filled steel tubular bending members[J]. China Civil Engineering Journal, 2019, 52(6): 55-66. (in Chinese) doi: 10.15951/j.tmgcxb.2019.06.005 [5] 刘永健, 李运喜, 刘君平, 等. 受压弦管填充混凝土的矩形钢管桁架静力性能分析[J]. 建筑科学与工程学报, 2008, 25(4): 65-72. doi: 10.3321/j.issn:1673-2049.2008.04.012LIU Yong-jian, LI Yun-xi, LIU Jun-ping, et al. Static behavior analysis of RHS trusses with concrete-filled compression chord member[J]. Journal of Architecture and Civil Engineering, 2008, 25(4): 65-72. (in Chinese) doi: 10.3321/j.issn:1673-2049.2008.04.012 [6] 刘永健, 刘君平, 张俊光. 主管内填混凝土矩形和圆形钢管桁架受弯性能对比试验研究[J]. 建筑结构学报, 2010, 31(4): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201004012.htmLIU Yong-jian, LIU Jun-ping, ZHANG Jun-guang. Experimental research on RHS and CHS truss with concrete filled chord[J]. Journal of Building Structures, 2010, 31(4): 86-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201004012.htm [7] 刘永健, 刘君平, 杨根杰, 等. 主管内填充混凝土矩形钢管桁架受力性能试验研究[J]. 建筑结构学报, 2009, 30(6): 107-112.LIU Yong-jian, LIU Jun-ping, YANG Gen-jie, et al. Experimental research on mechanical behavior of RHS trusses with concrete-filled in chord[J]. Journal of Building Structures, 2009, 30(6): 107-112. (in Chinese) [8] 刘永健, 周绪红, 肖龙. 矩形钢管混凝土桁架受压节点承载力[J]. 建筑结构, 2004, 34(1): 24-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200401006.htmLIU Yong-jian, ZHOU Xu-hong, XIAO Long. Load bearing capacity of compression joints of trusses with concrete-filled rectangular steel tube members[J]. Building Structure, 2004, 34(1): 24-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200401006.htm [9] 刘永健, 马印平, 田智娟, 等. 矩形钢管混凝土组合桁梁连续刚构桥实桥试验[J]. 中国公路学报, 2018, 31(5): 53-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201805008.htmLIU Yong-jian, MA Yin-ping, TIAN Zhi-juan, et al. Field test of rectangular concrete filled steel tubular composite truss bridge with continuous rigid system[J]. China Journal of Highway and Transport, 2018, 31(5): 53-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201805008.htm [10] HAN Lin-hai, XU Wu, HE Shan-hu, et al. Flexural behaviour of concrete filled steel tubular (CFST) chord to hollow tubular brace truss: experiments[J]. Journal of Constructional Steel Research, 2015, 109: 137-151. [11] HUANG Yong-hui, LIU Ai-rong, FU Ji-yang, et al. Experimental investigation of the flexural behavior of CFST trusses with interfacial imperfection[J]. Journal of Constructional Steel Research, 2017, 137: 52-65. [12] ROBINSON M J, MELBY I H. Effects of bonding in short-span rectangular concrete filled GFRP tubes[J]. Composite Structures, 2015, 133: 131-139. [13] 卢进, 秦鹏. 界面缺陷钢管混凝土轴压极限承载力理论推导[J]. 铁道科学与工程学报, 2018, 15(9): 2316-2326. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201809019.htmLU Jin, QIN Peng. Theoretical derivation of ultimate bearing capacity of concrete filled steel tube with interface defects under axial compression[J]. Journal of Railway Science and Engineering, 2018, 15(9): 2316-2326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201809019.htm [14] CHEN Yu, FENG Ran, SHAO Yong-bo, et al. Bond-slip behaviour of concrete-filled stainless steel circular hollow section tubes[J]. Journal of Constructional Steel Research, 2017, 130: 248-263. [15] TAO Zhong, SONG Tian-yi, UY B, et al. Bond behavior in concrete-filled steel tubes[J]. Journal of Constructional Steel Research, 2016, 120: 81-93. [16] CHEN Li-hua, DAI Ji-xiang, JIN Qi-liang, et al. Refining bond-slip constitutive relationship between checkered steel tube and concrete[J]. Construction and Building Materials. 2015, 79: 153-164. [17] ZHANG Jie, DENAVIT M D, HAJJAR J F, et al. Bond behavior of concrete-filled steel tube (CFT) structures[J]. Engineering Journal, 2012, 49: 169-185. [18] 王秋维, 刘乐, 史庆轩, 等. 钢管活性粉末混凝土界面粘结强度计算方法研究[J]. 工程力学, 2020, 37(4): 41-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202004006.htmWANG Qiu-wei, LIU Le, SHI Qing-xuan, et al. A calculation method of the interface bond strength of reactive powder concrete filled in steel tubes[J]. Engineering Mechanics, 2020, 37(4): 41-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202004006.htm [19] 王秋维, 梁林, 史庆轩, 等. 方钢管超高性能混凝土界面黏结滑移性能[J/OL]. 湖南大学学报(自然科学版), 2022, http://kns.cnki.net/kcms/detail/43.1061.N.20220830.1810.006.html.WANG Qiu-wei, LIANG Lin, SHI Qing-xuan, et al. Study on the interface bond-slip behavior of ultra-high performance concrete-filled square steel tube[J/OL]. Journal of Hunan University (Natural Sciences), 2022, http://kns.cnki.net/kcms/detail/43.1061.N.20220830.1810.006.html. (in Chinese) [20] 王秋维, 王程伟, 刘乐, 等. 钢管混凝土界面粘结性能研究现状与分析进展[J]. 建筑结构, 2021, 51(12): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG202112018.htmWANG Qiu-wei, WANG Cheng-wei, LIU Le, et al. Research status and analysis progress of the interfacial bond performance of concrete-filled steel tubes[J]. Building Structure, 2021, 51(12): 91-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG202112018.htm [21] 赵卫平, 雷永旺, 尹鹏, 等. 钢管混凝土界面黏结破坏的声发射特征及时空演化机制[J]. 建筑结构学报, 2021, 42(12): 200-209. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202112020.htmZHAO Wei-ping, LEI Yong-wang, YIN Peng, et al. Investigation on acoustic emission characteristics and time-space evolution mechanism of interface bond failure of concrete-filled steel tube[J]. Journal of Building Structures, 2021, 42(12): 200-209. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202112020.htm [22] 应武挡, 陈宗平. 型钢高强混凝土界面黏结传力机理及影响因素分析[J]. 土木工程学报, 2016, 49(9): 53-63, 71. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201609006.htmYING Wu-dang, CHEN Zong-ping. Interface bond force transfer mechanisms and its influence analysis between shape steel and high-strength concrete[J]. China Civil Engineering Journal, 2016, 49(9): 53-63, 71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201609006.htm [23] DONG Hong-ying, CHEN Xue-peng, CAO Wan-lin, et al. Bond behavior of high-strength recycled aggregate concrete-filled large square steel tubes with different connectors[J]. Engineering Structures, 2020, 211: 110392. [24] 李小刚, 童根树. 考虑抗滑移刚度的钢管混凝土柱的荷载传递[J]. 工程力学, 2017, 34(11): 89-101. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201711012.htmLI Xiao-gang, TONG Gen-shu. Load transferin concrete-filled steel tubular columns considering anti-slip stiffness[J]. Engineering Mechanics, 2017, 34(11): 89-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201711012.htm [25] 陈宗平, 贾恒瑞, 陈俊睿. 高温后方钢管再生混凝土界面黏结性能及本构方程[J]. 湖南大学学报(自然科学版), 2022, 49(5): 160-173. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202205018.htmCHEN Zong-ping, JIA Heng-rui, CHEN Jun-rui. Interfacial bond behavior and constitutive equation of recycled aggregate concrete filled square steel tube after high temperature[J]. Journal of Hunan University (Natural Sciences), 2022, 49(5): 160-173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202205018.htm [26] 贾恒瑞, 陈宗平, 陈俊睿. 高温后圆钢管再生混凝土界面黏结滑移性能及本构方程研究[J]. 工程力学, 2021, 38(10): 119-133. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202110013.htmJIA Heng-rui, CHEN Zong-ping, CHEN Jun-rui. Research on interfacial bond behavior and constitutive equation of recycled aggregate concrete filled circle steel tube after exposure to high temperature[J]. Engineering Mechanics, 2021, 38(10): 119-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202110013.htm [27] 陈宗平, 徐金俊, 薛建阳, 等. 钢管再生混凝土黏结滑移推出试验及黏结强度计算[J]. 土木工程学报, 2013, 46(3): 49-58. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201303008.htmCHEN Zong-ping, XU Jin-jun, XUE Jian-yang, et al. Push-out test on the interface bond-slip behavior and calculation on bond strength between steel tube and recycled aggregate concrete in RACFST structures[J]. China Civil Engineering Journal, 2013, 46(3): 49-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201303008.htm [28] 程高. PBL加劲型矩形钢管混凝土结构工作机理研究[D]. 西安: 长安大学, 2015.CHENG Gao. Research on the mechanism of rectangular concrete-filled steel tube structure stiffened with PBL[D]. Xi'an: Chang'an University, 2015. (in Chinese) [29] 刘永健, 池建军. 钢管混凝土界面抗剪粘结强度的推出试验[J]. 工业建筑, 2006, 36(4): 78-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ200604023.htmLIU Yong-jian, CHI Jian-jun. Push-out test on shear bond strength of CFST[J]. Industrial Construction, 2006, 36(4): 78-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ200604023.htm [30] 郑双杰, 刘玉擎. 开孔板连接件初期抗剪刚度试验[J]. 中国公路学报, 2014, 27(11): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201411013.htmZHENG Shuang-jie, LIU Yu-qing. Experiment of initial shear stiffness of perfobond connector[J]. China Journal of Highway and Transport, 2014, 27(11): 69-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201411013.htm