Deformation characteristics of cement stabilized macadam aggregate of high-speed railway in coarse-grained sulfate soil area
-
摘要: 为了探究粗粒硫酸盐渍土区高速铁路路涵、桥梁等过渡段的水泥固化级配碎石在不同工况下的变形特征及其机理,基于固化路基填料的材料特点,采用0~2.5%含盐量的级配碎石,掺加不同种类及含量的水泥,开展常温下有(无)毛细水上升的变形特性试验;针对固化路基段的基床,开展基础冻融循环模拟试验,同时结合XRD试验分析变形机理;在试验的基础上,选取典型试验材料,开展冻融循环工况下的路基-构筑物模拟试验。试验结果表明:在无毛细水上升工况中,普通水泥配制的含盐级配碎石试样产生的变形可达5%特种水泥掺配试样变形的4.2倍;在有毛细水上升工况中,普通水泥配制试样产生的变形最高可达5%特种水泥掺配试样变形的33.0倍;在不同含盐量条件下,3%~5%特种水泥固化级配碎石对相应普通水泥工况产生变形(毛细水上升导致)的最低抑制率为60%~80%;在6次基础冻融循环条件下,添加普通硅酸盐水泥试样产生的最终变形是添加特种水泥试样最终变形的16.0倍;路基-构筑物冻融循环模拟试验中特种水泥固化级配碎石的最大膨胀变形率仅为0.2%;在粗粒硫酸盐渍土地区,虽然水泥固化路基填料可以减少路基其他变形,但是对于高速铁路等对变形控制要求较严格的工程,周围介质中的盐分因素较难避免,普通水泥无法满足盐渍土地区的路基工程需求,需要采取特种水泥固化等工程措施。Abstract: To explore the deformation characteristics and mechanisms of cement stabilized macadam aggregate at the culverts, bridges and other transition sections for high-speed railways under different working conditions in coarse-grained sulfate saline soil area, based on the material properties of solidified subgrade filler, the graded gravel with 0-2.5% salt content was used and mixed with different kinds and contents of cements, and the deformation characteristics tests with and without capillary water rising at normal temperature were carried out. Besides, the basic freeze-thaw cycle test of the solidified subgrade bed was performed, and the composition change was analyzed by the XRD test at the same time. Based on the test results, the typical test materials were selected to carry out the subgrade-structure model test subjected to the freeze-thaw cycle. Test results show that without capillary water supply, the deformation of the salt-bearing graded crushed stone sample prepared with ordinary cement can reach 4.2 times that of the sample mixed with 5% special cement. Particularly, with capillary water supply, the deformation of the ordinary cement mixed sample can reach 33.0 times that of the 5% special cement mixed sample. Under different salt contents, the minimum inhibition rate achieved by 3%-5% special cement stabilized graded crushed stone on the deformation reduction of corresponding ordinary cement working condition (caused by capillary water rising) is 60%-80%. Subjected to six basic freeze-thaw cycles, the final deformation of the sample with ordinary cement is 16.0 times that of the sample with high sulfate resistance cement. Under the freeze-thaw cycle condition, the maximum expansion deformation rate of stabilized macadam aggregate mixed with special cement is only 0.2% in subgrade-structure model test. In coarse-grained sulfate saline soil area, although the cement solidified subgrade filler reduces other deformations of subgrade, it is necessary to introduce special cement solidification and other engineering measures for high-speed railway and other projects with strict deformation control requirements because the surrounding salt factors are difficult to avoid and ordinary cement cannot fulfil the requirements of subgrade engineering in saline soil areas.
-
Key words:
- high-speed railway /
- embankment engineering /
- solidified soil /
- sulfated saline soil /
- simulated test
-
表 1 水泥元素含量
Table 1. Cement element contents
水泥种类 元素含量/% 总含量/% C Al Ca Fe Mg K Na S Zn N Ti Si O 普通硅酸盐水泥 5.59 2.80 41.55 2.76 0.58 0.82 0.10 1.04 0.04 1.24 0.80 7.42 34.74 99.48 高抗硫酸盐水泥 1.75 1.54 49.73 4.78 0.30 0.66 0.09 0.96 0.20 0.00 0.70 8.38 30.14 99.43 表 2 水泥氧化物含量
Table 2. Cement oxide contents
水泥种类 氧化物含量/% 总含量/% SiO2 Al2O3 CaO Fe2O3 MgO K2O Na2O SO3 TiO2 普通硅酸盐水泥 17.28 7.30 64.44 5.19 0.88 0.56 1.12 2.30 0.31 99.38 高抗硫酸盐水泥 24.08 4.74 60.95 5.93 0.47 0.73 0.12 2.20 0.19 99.41 表 3 模型试验土样参数
Table 3. Soil sample parameters in model test
层号 土层名称 模型层厚/cm 重度/(kN·m-3) 黏聚力/kPa 内摩擦角/(°) 1 杂填土 5.5 15.0 0.0 8.5 2 素填土 8.5 18.5 7.5 11.0 3 细砂 18.0 21.5 0.0 32.0 4 黏性土 23.0 19.0 31.0 18.0 5 细砂 5.0 21.5 0.0 32.0 -
[1] 尧俊凯, 叶阳升, 王鹏程, 等. 硫酸盐侵蚀水泥改良路基段上拱研究[J]. 岩土工程学报, 2019, 41(4): 782-788. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904029.htmYAO Jun-kai, YE Yang-sheng, WANG Peng-cheng, et al. Subgrade heave of sulfate attacking on cement-stabilized filler[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 782-788. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904029.htm [2] ZHANG Sha-sha, ZHANG Jian-suo, GUI Yi-lin, et al. Deformation properties of coarse-grained sulfate saline soil under the freeze-thaw-precipitation cycle[J]. Cold Regions Science and Technology, 2020, 177: 103121. doi: 10.1016/j.coldregions.2020.103121 [3] ZHANG Sha-sha, YANG Xiao-hua, XIE Shan-jie, et al. Experimental study on improving the engineering properties of coarse grain sulphate saline soils with inorganic materials[J]. Cold Regions Science and Technology, 2020, 170: 102909. doi: 10.1016/j.coldregions.2019.102909 [4] 包卫星, 杨晓华, 谢永利. 典型天然盐渍土多次冻融循环盐胀试验研究[J]. 岩土工程学报, 2006, 28(11): 1991-1995. doi: 10.3321/j.issn:1000-4548.2006.11.014BAO Wei-xing, YANG Xiao-hua, XIE Yong-li. Research on salt expansion of representative crude saline soil under freezing and thawing cycles[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1991-1995. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.11.014 [5] 张莎莎, 杨晓华, 王龙. 单因素对粗粒盐渍土的盐胀规律影响效果研究[J]. 水利学报, 2015, 46(S1): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1024.htmZHANG Sha-sha, YANG Xiao-hua, WANG Long. Research on the law of salt expansion of crude coarse grained saline soil with the changing of single factors[J]. Journal of Hydraulic Engineering, 2015, 46(S1): 129-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1024.htm [6] 张莎莎, 谢永利, 杨晓华, 等. 典型天然粗粒盐渍土盐胀微观机制分析[J]. 岩土力学, 2010, 31(1): 123-127. doi: 10.3969/j.issn.1000-7598.2010.01.023ZHANG Sha-sha, XIE Yong-li, YANG Xiao-hua, et al. Research on microstructure of crude coarse grain saline soil under freezing and thawing cycles[J]. Rock and Soil Mechanics, 2010, 31(1): 123-127. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.01.023 [7] 张莎莎, 王永威, 包卫星, 等. 影响粗粒硫酸盐渍土盐胀特性的敏感因素研究[J]. 岩土工程学报, 2017, 39(5): 946-952. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705027.htmZHANG Sha-sha, WANG Yong-wei, BAO Wei-xing, et al. Sensitive parameters of embankment deformation behavior for coarse-grained sulfate saline soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 946-952. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705027.htm [8] 杨鹏, 朱彦鹏, 曹亚鹏, 等. 含水率单次递减条件下粗颗粒硫酸盐渍土盐胀的室内模拟试验[J]. 岩土力学, 2017, 38(10): 2909-2915. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710019.htmYANG Peng, ZHU Yan-peng, CAO Ya-peng, et al. Experiment of salt expansion behavior for coarse saline soil containing sulphate due to drying[J]. Rock and Soil Mechanics, 2017, 38(10): 2909-2915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710019.htm [9] ZHANG Jing, LAI Yuan-ming, LI Ji-feng, et al. Study on the influence of hydro-thermal-salt-mechanical interaction in saturated frozen sulfate saline soil based on crystallization kinetics[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118868. doi: 10.1016/j.ijheatmasstransfer.2019.118868 [10] LAI Yuan-ming, WAN Xu-sheng, ZHANG Ming-yi. An experimental study on the influence of cooling rates on salt expansion in sodium sulfate soils[J]. Cold Regions Science and Technology, 2016, 124: 67-76. doi: 10.1016/j.coldregions.2015.12.014 [11] XIAO Ze-an, LAI Yuan-ming, ZHANG Jun. Method for calculating the liquid water fraction of saline soil during the freezing process[J]. Permafrost and Periglacial Processes, 2021, 32(1): 92-101. doi: 10.1002/ppp.2077 [12] 吕擎峰, 贾梦雪, 王生新, 等. 含盐量对固化硫酸盐渍土抗压强度的影响[J]. 中南大学学报(自然科学版), 2018, 49(3): 718-724. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201803027.htmLYU Qing-feng, JIA Meng-xue, WANG Sheng-xin, et al. Effect of salt content on compressive strength of solidified sulphate saline soil[J]. Journal of Central South University (Science and Technology), 2018, 49(3): 718-724. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201803027.htm [13] 吕擎峰, 常承睿, 马博, 等. 固化硫酸盐渍土水盐迁移的试验研究[J]. 岩石力学与工程学报, 2018, 37(S2): 4290-4296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2051.htmLYU Qing-feng, CHANG Cheng-rui, MA Bo, et al. Experimental study on water and salt migration of solidified sulphate saline soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 4290-4296. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2051.htm [14] 吕擎峰, 王子帅, 何俊峰, 等. 碱激发地聚物固化盐渍土微观结构研究[J]. 长江科学院院报, 2020, 37(1): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202001016.htmLYU Qing-feng, WANG Zi-shuai, HE Jun-feng, et al. Microstructure of saline soil solidified with alkali-activated geopolymer[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(1): 79-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202001016.htm [15] 吕擎峰, 申贝, 王生新, 等. 水玻璃固化硫酸盐渍土强度特性及固化机制研究[J]. 岩土力学, 2016, 37(3): 687-693, 727. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603011.htmLYU Qing-feng, SHEN Bei, WANG Sheng-xin, et al. Strength characteristics and solidification mechanism of sulphate salty soil solidified with sodium silicate[J]. Rock and Soil Mechanics, 2016, 37(3): 687-693, 727. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603011.htm [16] LYU Qing-feng, JIANG Lu-sha, MA Bo, et al. A study on the effect of the salt content on the solidification of sulfate saline soil solidified with an alkali-activated geopolymer[J]. Construction and Building Materials, 2018, 176: 68-74. doi: 10.1016/j.conbuildmat.2018.05.013 [17] 张莎莎, 杨晓华. 粗粒盐渍土大型冻融循环剪切试验[J]. 长安大学学报(自然科学版), 2012, 32(3): 11-16. doi: 10.3969/j.issn.1671-8879.2012.03.003ZHANG Sha-sha, YANG Xiao-hua. Large shear test on coarse saline soil with freeze-thaw cycle[J]. Journal of Chang'an University (Natural Science Edition), 2012, 32(3): 11-16. (in Chinese) doi: 10.3969/j.issn.1671-8879.2012.03.003 [18] 邓友生, 蒲毅彬, 周成林. 冻结过程对盐渍土结构变化的试验研究[J]. 冰川冻土, 2008, 30(4): 632-640. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200804016.htmDENG You-sheng, PU Yi-bin, ZHOU Cheng-lin. Experimental study of structure change of saline soils due to freezing[J]. Journal of Glaciology and Geocryology, 2008, 30(4): 632-640. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200804016.htm [19] 梁维云, 韦昌富, 颜荣涛, 等. NaCl溶液饱和膨胀土的压缩特性及其微观机制[J]. 岩土力学, 2019, 40(12): 4759-4766. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912024.htmLIANG Wei-yun, WEI Chang-fu, YAN Rong-tao, et al. Microstructure and compression characteristics of NaCl solutions saturated expansive soil[J]. Rock and Soil Mechanics, 2019, 40(12): 4759-4766. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912024.htm [20] WAN Xu-sheng, LIU En-long, QIU En-xi, et al. Study on phase changes of ice and salt in saline soils[J]. Cold Regions Science and Technology, 2020, 172: 102988. [21] WAN Xu-sheng, YANG Zhao-hui. Pore water freezing characteristic in saline soils based on pore size distribution[J]. Cold Regions Science and Technology, 2020, 173: 103030. [22] WAN Xu-sheng, HU Qi-jun, LIAO Meng-ke. Salt crystallization in cold sulfate saline soil[J]. Cold Regions Science and Technology, 2017, 137: 36-47. [23] WAN Xu-sheng, LAI Yuan-ming, WANG Chong. Experimental study on the freezing temperatures of saline silty soils[J]. Permafrost and Periglacial Processes, 2015, 26: 175-187. [24] 吴刚, 邴慧, 卜东升. 盐渍土与盐溶液冻结温度关系的试验研究[J]. 冰川冻土, 2019, 41(3): 615-628. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201903013.htmWU Gang, BING Hui, BU Dong-sheng. Experimental study on the relationship between saline soil and salt solution freezing temperature[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 615-628. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201903013.htm [25] 王鹏程, 尧俊凯, 陈锋, 等. 无砟轨道路基上拱原因试验研究[J]. 铁道建筑, 2018, 58(1): 43-46. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201801010.htmWANG Peng-cheng, YAO Jun-kai, CHEN Feng, et al. Experimental study on heaving cause of ballastless track subgrade[J]. Railway Engineering, 2018, 58(1): 43-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201801010.htm [26] 杨晓华, 刘伟, 张莎莎, 等. 温度变化对粗粒硫酸盐渍土路基变形影响分析[J]. 中国公路学报, 2020, 33(3): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202003006.htmYANG Xiao-hua, LIU Wei, ZHANG Sha-sha, et al. Influence of temperature change on deformation of coarse-grained sulfate saline soil subgrade[J]. China Journal of Highway and Transport, 2020, 33(3): 64-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202003006.htm [27] ZHANG Sha-sha, WANG Yan-tao, XIAO Fei, et al. Large-scale model testing of high-speed railway subgrade under freeze-thaw and precipitation conditions[J]. Advances in Civil Engineering, 2019, 2019: 4245916. [28] PENG Shu-quan, WANG Fan, LI Xi-bing, et al. Experimental research on employed expanded polystyrene(EPS) for lightened sulfate heave of subgrade by thermal insulation properties[J]. Geotextiles and Geomembranes, 2020, 48(4): 516-523. [29] 张莎莎, 王旭超, 杨晓华, 等. 含盐施工用水对路基填料工程特性的累加效应[J]. 交通运输工程学报, 2020, 20(6): 71-81. doi: 10.19818/j.cnki.1671-1637.2020.06.006ZHANG Sha-sha, WANG Xu-chao, YANG Xiao-hua, et al. Cumulative effect of saline construction water on engineering properties of subgrade filling material[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 71-81. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.006 [30] LITTLE D N, NAIR S, HERBERT B. Addressing sulfate-induced heave in lime treated soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(1): 110-118. [31] 杨晓华, 张莎莎, 刘伟, 等. 粗颗粒盐渍土工程特性研究进展[J]. 交通运输工程学报, 2020, 20(5): 22-40. doi: 10.19818/j.cnki.1671-1637.2020.05.002YANG Xiao-hua, ZHANG Sha-sha, LIU Wei, et al. Research progress on engineering properties of coarse-grained saline soil[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 22-40. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.002 [32] 朱叶艇, 张桓, 张子新, 等. 盾构隧道推进对邻近地下管线影响的物理模型试验研究[J]. 岩土力学, 2016, 37(S2): 151-160. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2018.htmZHU Ye-ting, ZHANG Huan, ZHANG Zi-xin, et al. Physical model test study of influence of advance of shield tunnel on adjacent underground pipelines[J]. Rock and Soil Mechanics, 2016, 37(S2): 151-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2018.htm [33] 王鹏程, 叶阳升, 尧俊凯, 等. 硫酸盐侵蚀条件下无砟轨道路基上拱特性研究[J]. 铁道学报, 2021, 43(6): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202106018.htmWANG Peng-cheng, YE Yang-sheng, YAO Jun-kai, et al. Study on heaving characteristics of ballastless track subgrade subjected to sulfate attack[J]. Journal of the China Railway Society, 2021, 43(6): 135-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202106018.htm