留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水泥粉煤灰处理湿陷性黄土路基承载性能

邓友生 李龙 孙雅妮 姚志刚 孟丽青

邓友生, 李龙, 孙雅妮, 姚志刚, 孟丽青. 水泥粉煤灰处理湿陷性黄土路基承载性能[J]. 交通运输工程学报, 2023, 23(4): 92-103. doi: 10.19818/j.cnki.1671-1637.2023.04.006
引用本文: 邓友生, 李龙, 孙雅妮, 姚志刚, 孟丽青. 水泥粉煤灰处理湿陷性黄土路基承载性能[J]. 交通运输工程学报, 2023, 23(4): 92-103. doi: 10.19818/j.cnki.1671-1637.2023.04.006
DENG You-sheng, LI Long, SUN Ya-ni, YAO Zhi-gang, MENG Li-qing. Bearing capability of collapsible loess subgrade through cement-fly ash treatment[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 92-103. doi: 10.19818/j.cnki.1671-1637.2023.04.006
Citation: DENG You-sheng, LI Long, SUN Ya-ni, YAO Zhi-gang, MENG Li-qing. Bearing capability of collapsible loess subgrade through cement-fly ash treatment[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 92-103. doi: 10.19818/j.cnki.1671-1637.2023.04.006

水泥粉煤灰处理湿陷性黄土路基承载性能

doi: 10.19818/j.cnki.1671-1637.2023.04.006
基金项目: 

国家自然科学基金项目 51878554

陕西省自然科学基础研究计划项目 2018JZ5012

详细信息
    作者简介:

    邓友生(1969-),男,湖南桂阳人,西安科技大学教授,工学博士,从事路基加固理论与技术研究

    通讯作者:

    李龙(1993-),男,陕西商洛人,西安科技大学工学博士研究生

  • 中图分类号: U416.1

Bearing capability of collapsible loess subgrade through cement-fly ash treatment

Funds: 

National Natural Science Foundation of China 51878554

Natural Science Basic Research Project of Shaanxi Province 2018JZ5012

More Information
  • 摘要: 为揭示水泥粉煤灰后压浆对湿陷性黄土桩网结构路基的加固机理,开展后压浆水泥粉煤灰碎石桩室内静载试验,分析了后压浆对桩周土样湿陷系数的影响,研究了竖向静载作用下后压浆桩网结构路基沿深度方向附加应力、桩侧摩阻力及桩端阻力的变化规律;基于Boltzmann数学模型和荷载传递函数,分析了桩侧摩阻力和桩端阻力增强机理,给出后压浆桩侧摩阻力和桩端阻力计算式;利用数值模拟方法,探讨了桩体弹性模量、后压浆深度、桩网置换率和褥垫层厚度对桩网结构路基承载力的影响机制。研究结果表明:在相同荷载作用下,经水泥粉煤灰后压浆处理后的桩周土体的湿陷系数小于自然土样的湿陷系数,且小于0.015;压浆后,静载作用下桩网结构路基中桩顶的竖向附加应力逐渐减小,桩间土的竖向附加应力先减小后增大,桩侧摩阻力较未压浆桩增大了约1.54倍;随着注浆深度的增加,桩身深度方向上的应力最大值呈先增大后减小趋势,且在等桩长深度处取得应力最大值;当桩网置换率提高1倍时,沿深度方向的应力和沉降均减小,其中应力峰值降低24%,沉降量减小26%;桩网结构路基中随着褥垫层厚度的增大,路基深度方向上应力逐渐增大。可见,水泥粉煤灰处理湿陷性黄土路基能减弱路基土体湿陷性,提高承载力,在施工过程中需要考虑桩体弹性模量、后压浆深度、桩网置换率和褥垫层厚度对路基承载力的影响。

     

  • 图  1  模型箱

    Figure  1.  Model box

    图  2  粉煤灰浆体的X射线衍射图谱

    Figure  2.  X-ray diffraction pattern of fly ash mortar

    图  3  桩位布置(单位:mm)

    Figure  3.  Layouts of pile body (unit: mm)

    图  4  土工格栅

    Figure  4.  Geo grid

    图  5  模型试验

    Figure  5.  Model test

    图  6  测试元件布置(单位:mm)

    Figure  6.  Layout of test unit (Unit: mm)

    图  7  桩周土样湿陷系数

    Figure  7.  Collapsibility coefficients of soil samples around piles

    图  8  竖向附加应力

    Figure  8.  Variation additional stresses

    图  9  桩侧摩阻力-桩土相对位移曲线

    Figure  9.  Curves of pile side friction resistance and pile-soil relative displacement

    图  10  桩端阻力-桩土相对位移曲线

    Figure  10.  Curves of pile tip resistance and pile-soil relative displacement

    图  11  桩身深度-应力曲线

    Figure  11.  Pile depth-stress curves

    图  12  桩身深度-沉降曲线

    Figure  12.  Pile depth-settlement curves

    图  13  注浆深度不同时桩网结构路基深度-应力曲线

    Figure  13.  Depth-stress curves of pile-net composite subgrades with different grouting depths

    图  14  置换率不同时桩网结构路基深度-应力曲线

    Figure  14.  Depth-settlement curves of pile-net composite subgrades with different replacement rates

    图  15  置换率不同时桩网结构路基深度-沉降曲线

    Figure  15.  Depth-settlement curves of pile-net composite subgrades with different replacement rates

    图  16  褥垫层厚度不同时桩网结构路基深度-应力曲线

    Figure  16.  Depth-stress curves of pile-net composite subgrades with different cushion layer

    表  1  参数相似关系

    Table  1.   Similarity relations of parameters

    物理量 相似系数
    长度/m 10
    质量/kg 100
    应力/Pa 1
    位移/m 10
    弹性模量/MPa 1
    泊松比 1
    下载: 导出CSV

    表  2  黄土物理力学参数

    Table  2.   Physical and mechanical parameters of loess

    土的分类 密度/(g·cm-3) 黏聚力/kPa 摩擦角/(°) 压缩模量/MPa 泊松比
    粉质黏土 1.78 44.27 29.64 5.8 0.25
    下载: 导出CSV

    表  3  粉煤灰化学成分

    Table  3.   Chemical compositions of fly ash

    成分 SiO2 Al2O3 Fe2O3 CaO MgO SO3 其他
    百分比/% 62.76 23.73 4.02 3.56 2.62 2.79 0.52
    下载: 导出CSV

    表  4  粉煤灰物理性质

    Table  4.   Physical properties of fly ash

    项目 国家标准 检验结果
    Ⅰ级 Ⅱ级 Ⅲ级
    细度(45 μm筛余/%) ≤12 ≤20 ≤45 19.8
    需水量比/% ≤95 ≤105 ≤115 105
    烧失量/% ≤5 ≤8 ≤15 2.0
    含水率/% ≤1 ≤1 - 0.9
    SO3含量/% ≤3 ≤3 ≤3 2.7
    下载: 导出CSV

    表  5  水泥的主要物理力学指标

    Table  5.   Main physical and mechanical indexes of cement

    比表面积/(m2·kg-1) 安定性/mm 凝结时间/min 强度/MPa
    初凝 终凝 3 d 28 d
    357 3.6 65 470 18.1 43.6
    下载: 导出CSV

    表  6  模型桩与湿陷性黄土物理力学参数

    Table  6.   Physical and mechanical parameters of model pile and collapsible loess

    材料类别 弹性模量/MPa 泊松比 重度/(kN·m-3) 黏聚力/kPa 内摩擦角/(°) 深度/m
    湿陷性黄土(修正前) 12 0.25 15.9 27 13.3 0~6
    湿陷性黄土(修正后) 6 0.25 17.9 27 13.3 0~6
    粉质黏土 12 0.25 17.9 30 26.0 6~20
    注浆水泥粉煤灰加固桩 12 000 0.20 21.3 6
    下载: 导出CSV

    表  7  桩网结构路基不同深度处沉降

    Table  7.   Settlements of different depths of pile-net composite subgrade

    深度/m 沉降/mm 深度/m 沉降/mm
    E=1.2 GPa E=2.4 GPa E=1.2 GPa E=2.4 GPa
    0.0 0.85 6.43 3.0 4.85 8.41
    0.5 1.19 6.63 3.5 6.00 9.00
    1.0 1.66 6.89 4.0 7.45 9.67
    1.5 2.21 7.16 4.5 8.86 10.46
    2.0 2.91 7.51 5.0 10.29 11.21
    2.5 3.83 7.96 5.5 11.66 11.93
    下载: 导出CSV
  • [1] 盛明强, 乾增珍, 杨文智, 等. 浸水饱和条件下黄土微型桩抗压和抗拔承载力试验[J]. 岩土工程学报, 2021, 43(12): 2258-2264. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202112012.htm

    SHENG Ming-qiang, QIAN Zeng-zhen, YANG Wen-zhi, et al. Field compression and uplift tests on micropiles in collapsible loess under completely-soaked and saturated conditions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2258-2264. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202112012.htm
    [2] 张延杰, 王旭, 梁庆国, 等. 浸水条件下湿陷性黄土地基群桩基础承载特性模型试验研究[J]. 岩土工程学报, 2021, 43(增1): 219-223. doi: 10.11779/CJGE2021S1040

    ZHANG Yan-jie, WANG Xu, LIANG Qing-guo, et al. Model tests on bearing behavior of pile groups in collapsible loess ground under water immersion[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 219-223. (in Chinese) doi: 10.11779/CJGE2021S1040
    [3] 杨重存. 黄土固化技术在公路工程中的应用及试验研究[D]. 西安: 长安大学, 2000.

    YANG Chong-cun. Application and experimental study of loess solidification technology in highway engineering[D]. Xi'an: Chang'an University, 2000. (in Chinese)
    [4] 邓友生, 李龙, 刘俊聪, 等. 波纹塑料套管煤矸石CFG桩复合路基承载试验[J]. 中国公路学报, 2023, 36(4): 48-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202304005.htm

    DENG You-sheng, LI Long, LIU Jun-cong, et al. Load-bearing test on composite subgrade of coal gangue CFG pile with corrugated plastic[J]. China Journal of Highway and Transport, 2023, 36(4): 48-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202304005.htm
    [5] 祁巧艳, 刘亚龙. 基于塑性理论的湿陷性黄土本构模型[J]. 兰州理工大学学报, 2015, 41(3): 117-121. doi: 10.13295/j.cnki.jlut.2015.03.025

    QI Qiao-yan, LIU Ya-long. Plastic theory-based wet-collapsible loess constitutive model[J]. Journal of Lanzhou University of Technology, 2015, 41(3): 117-121. (in Chinese) doi: 10.13295/j.cnki.jlut.2015.03.025
    [6] 魏平, 魏静, 杨松林, 等. 高速铁路低路基桩网结构土工格栅动力特性[J]. 交通运输工程学报, 2017, 17(6): 19-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201706006.htm

    WEI Ping, WEI Jing, YANG Song-lin, et al. Geogrid dynamic characteristics of pile-net structure in low subgrade of high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 19-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201706006.htm
    [7] 邓友生, 李龙, 赵衡, 等. 基于透明土的梅花桩沉桩挤土效应[J]. 湖南大学学报(自然科学版), 2022, 49(7): 205-213. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202207021.htm

    DENG You-sheng, LI Long, ZHAO Heng, et al. Plum-blossom pile penetration effect based on transparent soil[J]. Journal of Hunan University (Natural Sciences), 2022, 49(7): 205-213. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202207021.htm
    [8] 王永鑫, 邵生俊, 韩常领, 等. 湿陷性黄土砂井浸水试验的应用研究[J]. 岩土工程学报, 2018, 40(增1): 159-164, 7. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1027.htm

    WANG Yong-xin, SHAO Sheng-jun, HAN Chang-ling, et al. Application of sand drain immersion tests on collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 159-164, 7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1027.htm
    [9] WANG Jia-ding, ZHANG Deng-fei, ZHANG Yong-shuang, et al. Variations in hydraulic properties of collapsible loess exposed to wetting and shearing[J]. Acta Geotechnica, 2022, 17(7): 2995-3015. doi: 10.1007/s11440-021-01427-y
    [10] ZHAO Meng, WU Hong-gang, GUO Wei, et al. Experimental study of the particle agglomeration on its mechanical properties of collapsible loess[J]. Frontiers in Earth Science, 2022, 10: 943383. doi: 10.3389/feart.2022.943383
    [11] 穆青翼, 党影杰, 董琪, 等. 原状和压实黄土持水特性及湿陷性对比试验研究[J]. 岩土工程学报, 2019, 41(8): 1496-1504. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908017.htm

    MU Qing-yi, DANG Ying-jie, DONG Qi, et al. Water-retention characteristics and collapsibity behaviors: comparison between intact and compacted loesses[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1496-1504. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908017.htm
    [12] 苏忍, 张恒睿, 张稳军, 等. 兰州地铁大厚度湿陷性黄土地层的现场浸水试验研究[J]. 土木工程学报, 2020, 53(增1): 186-193. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2020S1030.htm

    SU Ren, ZHANG Heng-rui, ZHANG Wen-jun, et al. Immersion tests on self-weight collapsible loess site with large depth of Lanzhou metro line[J]. China Civil Engineering Journal, 2020, 53(S1): 186-193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2020S1030.htm
    [13] 徐硕昌, 刘德仁, 王旭, 等. 兰州新区大厚度湿陷性黄土宏细观参数试验研究[J]. 铁道科学与工程学报, 2022, 19(7): 1918-1926. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202207014.htm

    XU Shuo-chang, LIU De-ren, WANG Xu, et al. Experimental study on macro and meso parameters of large thickness collapsible loess in Lanzhou New District[J]. Journal of Railway Science and Engineering, 2022, 19(7): 1918-1926. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202207014.htm
    [14] 吴会东. 山西北部地区黄土湿陷性快速判定方法研究[J]. 铁道工程学报, 2021, 38(2): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202102007.htm

    WU Hui-dong. Research on a fast judgement method of loess collapsibility in northern Shanxi[J]. Journal of Railway Engineering Society, 2021, 38(2): 35-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202102007.htm
    [15] ZHENG Zi-yu, LI Xi-an, WANG Li, et al. A new approach to evaluation of loess collapsibility based on quantitative analyses of colloid-clay coating with statistical methods[J]. Engineering Geology, 2021, 288: 106167.
    [16] ZHANG Yan-jie, HAN Jian-long, WANG Xu, et al. Evaluation of loess collapsibility based on random field theory in Xi'an, China[J]. Mathematical Problems in Engineering, 2022, 2022: 8665061.
    [17] ZHONG Xiu-mei, LIANG Yu-xin, WANG Qian, et al. Evaluation and analysis of the effect of lignin amelioration on loess collapsibility[J]. Journal of Renewable Materials, 2022, 10(12): 3405-3424.
    [18] HANNA A, SOLIMAN S. Experimental investigation of foundation on collapsible soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(11): 04017085.
    [19] ZHANG Yang, JOHNSON A E, WHITE D J. Freeze-thaw performance of cement and fly ash stabilized loess[J]. Transportation Geotechnics, 2019, 21: 100279.
    [20] 崔自治, 朱楠, 王晓芸. 黄土自重湿陷性评价的理论与试验研究[J]. 兰州理工大学学报, 2013, 39(6): 115-117. https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201306026.htm

    CUI Zi-zhi, ZHU Nan, WANG Xiao-yun. Theoretical and experimental research on evaluation of loess collapsible under overburden pressure[J]. Journal of Lanzhou University of Technology, 2013, 39(6): 115-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201306026.htm
    [21] 崔靖俞. 工业废料注浆加固湿陷性黄土的试验研究[D]. 西宁: 青海大学, 2020.

    CUI Jing-yu. Experimental study on grouting reinforcement of collapsible loess by industrial waste[D]. Xining: Qinghai University, 2020. (in Chinese)
    [22] 朱苗淼, 朱武卫. 矿渣与工业废渣改良黄土的性能与机理研究进展[J]. 灾害学, 2022, 37(1): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202201022.htm

    ZHU Miao-miao, ZHU Wu-wei. Research progress on properties and mechanism of loess modified by slag and industrial waste residue[J]. Journal of Catastrophology, 2022, 37(1): 129-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202201022.htm
    [23] MEI Yuan, ZHANG Shu-min, HU Chang-ming, et al. Field test study on dynamic compaction in treatment of a deep collapsible loess foundation[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(10): 8059-8073.
    [24] 张恩祥, 何腊平, 龙照, 等. 黄土地区刚-柔性桩复合地基的承载机理[J]. 交通运输工程学报, 2019, 19(4): 70-80. doi: 10.19818/j.cnki.1671-1637.2019.04.007

    ZHANG En-xiang, HE La-ping, LONG Zhao, et al. Bearing mechanism of composite foundation with rigid-flexible piles in loess area[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 70-80. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.04.007
    [25] 周志军, 徐天宇, 徐甫, 等. 黄土地区不同成孔方式灌注桩压浆前后承载特性[J]. 交通运输工程学报, 2021, 21(4): 84-93. doi: 10.19818/j.cnki.1671-1637.2021.04.005

    ZHOU Zhi-jun, XU Tian-yu, XU Fu, et al. Bearing characteristics of cast-in-place piles with different hole-forming methods before and after grouting in loess area[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 84-93. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.04.005
    [26] 熊彩凤, 徐甫, 冯泓鸣, 等. 黄土地区桥梁灌注桩桩端后注浆优化室内模型试验研究[J]. 铁道科学与工程学报, 2022, 19(6): 1585-1593. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202206013.htm

    XIONG Cai-feng, XU Fu, FENG Hong-ming, et al. Laboratory model test study on optimization of post grouting at the end of bridge cast-in-place pile in loess area[J]. Journal of Railway Science and Engineering, 2022, 19(6): 1585-1593. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202206013.htm
    [27] 贾剑青, 赵阳阳, 贾超, 等. 湿陷性黄土地基水泥土搅拌桩加固效果研究[J]. 铁道工程学报, 2022, 39(7): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202207003.htm

    JIA Jian-qing, ZHAO Yang-yang, JIA Chao, et al. Research on the reinforcement effect of cement-soil mixing pile on collapsible loess foundation[J]. Journal of Railway Engineering Society, 2022, 39(7): 18-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202207003.htm
    [28] 马天忠, 孙晨东, 高玉广, 等. 浸水状态下湿陷性黄土场地螺旋灌注桩负摩阻力与土体湿陷规律试验[J]. 中国公路学报, 2022, 35(8): 151-161. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202208014.htm

    MA Tian-zhong, SUN Chen-dong, GAO Yu-guang, et al. Experimental analysis on negative friction resistance of spiral cast-in-place piles and soil collapse law in collapsible loess site[J]. China Journal of Highway and Transport, 2022, 35(8): 151-161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202208014.htm
    [29] HOU Jian, LU Yi-yang, WANG Jian-an, et al. Calculation model of compaction coefficient of soil among SP-PSC pile group on collapsible loess foundation[J]. Applied Sciences, 2023, 13(6): 4003.
    [30] YE Shuai-hua, ZHAO Zhuang-fu, ZHU Yan-peng. Study on negative friction of pile foundation in single homogeneous soil layer in collapsible loess area of northwest China[J]. Arabian Journal of Geosciences, 2021, 14(12): 1137.
    [31] PHOAK S, LUO Ya-sheng, LI Sheng-nan. Influence of submergence on stabilization of loess in Shaanxi province by adding fly ash[J]. Applied Sciences, 2019, 9(1): 68.
    [32] 肖宏彬. 竖向荷载作用下大直径桩的荷载传递理论及应用研究[D]. 长沙: 中南大学, 2005.

    XIAO Hong-bin. Theoretical and application research on load transfer of vertically loading large diameter piles[D]. Changsha: Central South University, 2005. (in Chinese)
    [33] 陈仁朋, 陈金苗, 汪焱卫, 等. 桩网结构路基应力传递特性及累积沉降规律[J]. 土木工程学报, 2015, 48(增2): 241-245. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S2044.htm

    CHEN Ren-peng, CHEN Jin-miao, WANG Yan-wei, et al. Stress transmission and cumulative settlement characteristics of geogrid reinforced pile supported embankment[J]. China Civil Engineering Journal, 2015, 48(S2): 241-245. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S2044.htm
    [34] 万志辉, 戴国亮, 龚维明, 等. 基于自平衡法后压浆灌注桩荷载传递函数的变化分析[J]. 土木工程学报, 2017, 50(8): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201708011.htm

    WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, et al. Analysis on the load transfer function of post-grouting bored pile based on self-balanced method[J]. China Civil Engineering Journal, 2017, 50(8): 98-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201708011.htm
    [35] 万志辉, 戴国亮, 龚维明. 超厚细砂地层大直径后压浆桩荷载传递计算与分析[J]. 岩土力学, 2018, 39(4): 1386-1394. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804031.htm

    WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming. Calculation and analysis of load transfer in large-diameter grouted pile in extra-thick fine sand layers[J]. Rock and Soil Mechanics, 2018, 39(4): 1386-1394. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804031.htm
    [36] RUIZ M E, PANDO M A. Load transfer mechanisms of tip post-grouted drilled shafts in sand[C]//ASCE. Proceedings of International Foundation Congress and Equipment Expo. Reston: ASCE, 2009: 23-30.
  • 加载中
图(16) / 表(7)
计量
  • 文章访问数:  633
  • HTML全文浏览量:  218
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-11
  • 网络出版日期:  2023-09-08
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回