Application of combined empowerment cloud model to expressway channel adaptability assessments
-
摘要: 为了科学评价高速公路通道与区域发展之间的适应性,分析了高速公路通道对区域经济的影响因素;利用反映像相关矩阵的评价指标筛选方法进行指标降维,建立了区域高速公路通道适应性评价指标体系;通过灰色关联度进行客观赋权,计算了模型各评价指标的权重,并在算法中弥补因层次分析法(AHP)主观判断造成的误差;建立了AHP-灰色关联度混合约束锥的云模型,并对2019年沈海高速公路通道46个路段进行评价;针对不适应路段在扩容改造、差异化收费和主动交通管理等方面的问题,提出了相关改进意见和具体措施。研究结果表明:将高速公路适应性评价指标由18个降为9个,在不影响模型精度的同时,可以大幅度降低模型复杂度;沈海高速公路的适度超前路段、总体适应路段、初步适应路段、相对滞后路段、严重制约路段占比分别为6.52%、21.74%、43.48%、21.74%、6.52%;与传统数据包络分析(DEA)模型相比,AHP-灰色关联度混合约束锥的云模型评估出的适度超前路段减小17.39%,初步适应路段增加43.48%,严重制约路段增加6.52%,并以福州市内路段、泉州市内路段、晋江市内路段和厦门市内路段不适应程度最为严重,这些严重制约路段在传统DEA模型中并未评价出来。可见,使用AHP-灰色关联度组合赋权的云模型可以提高评价结果的准确性和科学性,是解决高速公路通道适应性评价问题的一种有效方法。Abstract: In order to scientifically assessment the adaptability between expressway channels and regional development, the influencing factors of expressway channels on the regional economy were analyzed. The evaluation index screening method of the anti-image correlation matrix was used for index dimensionality reduction, and the evaluation index system of expressway adaptability of regional channels was established. The weights of each evaluation index of the model were calculated by the objective assignment through the gray correlation, and the errors caused by the subjective judgment of the analytic hierarchy process (AHP) were compensated in the algorithm. A cloud model with a hybrid AHP-gray correlation degree constrained cone was developed, and 46 road sections of the Shenhai Expressway channel in 2019 were evaluated. Relevant improvement opinions and specific measures were proposed to address the problems of the non-adaptive road sections in terms of capacity expansion and reconstruction, differentiated charging, and active traffic management. Research results show that the model complexity can reduces substantially without affecting the model accuracy by reducing the expressway adaptability evaluation indexes from 18 to 9. By evaluating the Shenhai Expressway, the moderately over-adapted road sections, the overall adaptive road sections, the preliminary adaptive road sections, the relative lagging road sections and the seriously constrained road sections account for 6.52%, 21.74%, 43.48%, 21.74% and 6.52%, respectively. Compared with the traditional data enveloping analysis (DEA) model, the cloud model with AHP-grey correlation degree constraint cone has 17.39% fewer moderately over-adapted road sections, 43.48% more preliminary adaptive road sections, and 6.52% more seriously constrained road sections. In particular, the degree of maladaptation is the most serious in the inner sections of Fuzhou City, Quanzhou City, Jinjiang City, and Xiamen City, which are not evaluated by the traditional DEA model. It can be seen that the accuracy and scientificity of the evaluation results can be improved by the cloud model using the AHP-gray correlation degree combination assignment, and it is an effective method to solve the problem of expressway channel adaptability assessment.
-
Key words:
- transportation /
- expressway /
- channel adaptability /
- cloud model /
- roadway congestion /
- income distribution coefficient
-
表 1 筛选后适应性评价指标
Table 1. Adaptability assessment indicators after screening
指标构成 指标类型 单项指标 高速公路技术指标 技术特征 节点可达性系数 服务水平 道路拥挤度 运输能力 日均客运密度 日均货运密度 人均地区生产总值 高速公路经济效益指标 直接经济效益 第二、三产业占地区生产总值比例 恩格尔系数 间接经济效益 第二、三产业就业人数 收入分配系数 表 2 评价指标因子划分标准
Table 2. Division standards of assessment index factors
一级指标 二级指标 适度超前 总体适应 初步适应 相对滞后 严重制约 技术特征 节点可达性系数 0~0.4 0.4~0.6 0.6~1.0 1.0~1.6 >1.6 服务水平 道路拥挤度 0~0.3 0.3~0.5 0.5~0.7 0.7~0.9 >0.9 运输能力 日均客运密度/(万人·km·km-1) >1.4 1.2~1.4 0.9~1.2 0.6~0.9 <0.6 日均货运密度/(104 t·km·km-1) >3.2 2.7~3.2 1.8~2.7 0.8~1.8 <0.8 直接经济效益 人均地区生产总值/万元 <7.0 7.0~8.7 8.7~11.6 11.6~15.0 >15.0 第二、三产业占地区生产总值比例 <0.85 0.85~0.87 0.87~0.91 0.91~0.95 >0.95 恩格尔系数 >0.50 0.44~0.50 0.33~0.44 0.20~0.33 0~0.20 间接经济效益 第二、三产业就业人数/万人 <20.0 20.0~41.4 41.4~77.0 77.0~120.0 >120.0 收入分配系数 <0.80 0.80~0.86 0.86~0.97 0.97~1.10 >1.10 表 3 不同等级云模型数字特征
Table 3. Digital characteristics of different levels of cloud models
指标 适度超前 总体适应 初步适应 相对滞后 严重制约 节点可达性系数 (0.200, 0.170, 0.030) (0.500, 0.090, 0.020) (0.800, 0.170, 0.020) (1.300, 0.260, 0.030) (1.800, 0.170, 0.030) 道路拥挤度 (0.150, 0.100, 0.020) (0.400, 0.090, 0.030) (0.600, 0.090, 0.030) (0.800, 0.090, 0.020) (1.100, 0.120, 0.030) 日均客运密度/(万人·km·km-1) (1.600, 0.140, 0.030) (1.300, 0.090, 0.030) (1.100, 0.130, 0.040) (0.750, 0.130, 0.030) (0.460, 0.120, 0.030) 日均货运密度/(104 t·km·km-1) (3.400, 1.450, 0.030) (2.900, 0.210, 0.040) (2.300, 0.380, 0.050) (1.300, 0.420, 0.040) (0.450, 0.300, 0.050) 人均地区生产总值/万元 (5.600, 1.210, 0.090) (7.800, 0.730, 0.090) (10.200, 2.900, 0.090) (13.300, 1.500, 0.090) (16.000, 0.970, 0.080) 第二、三产业地区生产总值占比 (0.840, 0.006, 0.002) (0.860, 0.009, 0.003) (0.890, 0.017, 0.002) (0.930, 0.017, 0.003) (0.970, 0.015, 0.004) 恩格尔系数 (0.600, 0.040, 0.010) (0.500, 0.030, 0.010) (0.400, 0.050, 0.010) (0.300, 0.050, 0.010) (0.100, 0.090, 0.010) 第二、三产业就业人数/万人 (12.430, 6.430, 0.080 (30.720, 9.090, 0.070) (59.220, 15.100, 0.080) (98.500, 18.260, 0.080) (123.450, 2.930, 0.100) 收入分配系数 (0.779, 0.018, 0.006) (0.830, 0.025, 0.007) (0.920, 0.047, 0.008) (1.040, 0.055, 0.008) (1.145, 0.083, 0.008) 表 4 组合云模型与DEA模型对比
Table 4. Comparation between combined empowerment cloud model and DEA model
% 模型 适度超前 总体适应 初步适应 相对滞后 严重制约 组合云模型 6.52 21.74 43.48 21.74 6.52 DEA模型 23.91 36.96 0.00 39.13 0.00 -
[1] 李彬, 肖润谋, 闫晟煜, 等. 中国高速公路运输态势[J]. 交通运输工程学报, 2020, 20(4): 184-193. doi: 10.19818/j.cnki.1671-1637.2020.04.015LI Bin, XIAO Run-mou, YAN Sheng-yu, et al. Transportation trend of Chinese expressway[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 184-193. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.015 [2] 李建龙. 高速公路建设与区域经济发展研究[J]. 全国流通经济, 2021(6): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-QGSQ202106023.htmLI Jian-long. Research on expressway construction and regional economic development[J]. China Circulation Economy, 2021(6): 71-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QGSQ202106023.htm [3] 刘奕. 高速公路经济适应性理论与评价方法研究[D]. 北京: 北京交通大学, 2009.LIU Yi. Research on theory and evaluation method of economic adaptability of expressway[D]. Beijing: Beijing Jiaotong University, 2009. (in Chinese) [4] 匡桂华. 区域交通基础设施对产业集聚的影响研究[D]. 广州: 华南理工大学, 2017.KUANG Gui-hua. The research on the effect of regional transportation infrastructure on the industrial agglomeration[D]. Guangzhou: South China University of Technology, 2017. (in Chinese) [5] 王莹莹. 交通基础设施对县域经济发展的影响[D]. 兰州: 兰州交通大学, 2021.WANG Ying-ying. The impact of transportation infrastructur e on county economic development[D]. Lanzhou: Lanzhou Jiaotong University, 2021. (in Chinese) [6] 马炳享. 公路网与区域经济发展适应性评价研究[D]. 广州: 华南理工大学, 2016.MA Bing-xiang. Research on adaptability evaluation of highway network and reginal economic development[D]. Guangzhou: South China University of Technology, 2016. (in Chinese) [7] 杨易霖. 陕西省公路交通运输对区域经济发展的影响分析[D]. 西安: 长安大学, 2017.YANG Yi-lin. Analysis the influence of road transportation on regional economic development in Shaanxi Province[D]. Xi'an: Chang'an University, 2017. (in Chinese) [8] 芮海田, 吴群琪, 赵跃峰, 等. 公路建设对区域经济发展的影响分析——以陕西省为例[J]. 长安大学学报(自然科学版), 2012, 32(6): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201206014.htmRUI Hai-tian, WU Qun-qi, ZHAO Yue-feng, et al. Influence of highway construction on regional economy development: taking Shaanxi as an example[J]. Journal of Chang'an University (Natural Science Edition), 2012, 32(6): 83-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201206014.htm [9] 贾锐宁, 徐海成. 高速公路规模与区域经济发展的适应性——基于2001—2015年中国省级面板数据的实证分析[J]. 中国流通经济, 2017, 31(7): 20-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGLT201707004.htmJIA Rui-ning, XU Hai-cheng. The adaptability study of the expressway scale and regional economic development—based on the empirical analysis of the provincial panel data in China from 2001 to 2015[J]. China Business and Market, 2017, 31(7): 20-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGLT201707004.htm [10] BAKLANOV P, ROMANOV M, KARAKIN V, et al. Projects of development of transcontinental transport-economic belts in Northern Eurasia[J]. Journal of Resources and Ecology, 2015, 6(2): 110-113. doi: 10.5814/j.issn.1674-764x.2015.02.008 [11] 官冬杰, 李子辉, 刘欣雨, 等. 高速公路引导下的长江经济带路网评价研究[J]. 公路, 2021, 66(9): 246-253. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202109043.htmGUAN Dong-jie, LI Zi-hui, LIU Xin-yu, et al. Study on road network evaluation of Yangtze River Economic Belt under the guidance of expressway[J]. Highway, 2021, 66(9): 246-253. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202109043.htm [12] 李德毅, 孟海军, 史雪梅. 隶属云和隶属云发生器[J]. 计算机研究与发展, 1995, 32(6): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ506.002.htmLI De-yi, MENG Hai-jun, SHI Xue-mei. Membership clouds and membership cloud generators[J]. Journal of Computer Research and Development, 1995, 32(6): 15-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ506.002.htm [13] CHOW A H F, SANTACREU A, TSAPAKIS I, et al. Empirical assessment of urban traffic congestion[J]. Journal of Advanced Transportation, 2014, 48(8): 1000-1016. [14] COIFMAN B, KIM S B. Measuring freeway traffic conditions with transit vehicles[J]. Transportation Research Record, 2009(2121): 90-101. [15] 朱嘉, 杨林, 陈灵均. 高速公路低碳运营综合效益评价指标体系研究[J]. 公路, 2016, 61(12): 231-235. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201612044.htmZHU Jia, YANG Lin, CHEN Ling-jun. Study on comprehensive benefit evaluation index system of low-carbon operation of expressway[J]. Highway, 2016, 61(12): 231-235. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201612044.htm [16] 闫晟煜, 肖润谋. 基于收费数据的高速公路运输量指标特征[J]. 交通运输工程学报, 2018, 18(6): 112-120. doi: 10.19818/j.cnki.1671-1637.2018.06.012YAN Sheng-yu, XIAO Run-mou. Index characteristics of expressway transportation volume based on toll collection data[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 112-120. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2018.06.012 [17] 赵水根. 对区域经济发展指标体系问题的若干评价[J]. 开发研究, 2009(5): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-KFYJ200905008.htmZHAO Shui-gen. Some evaluations on the index system of regional economic development[J]. Development Research, 2009(5): 37-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KFYJ200905008.htm [18] 李丽莎. 我国经济发展指标体系的构建与应用研究——基于经济发展的数量与质量角度[J]. 特区经济, 2011(6): 295-297. https://www.cnki.com.cn/Article/CJFDTOTAL-TAJJ201106112.htmLI Li-sha. Research on the construction and application of China's economic development index system—based on the quantitative and qualitative perspectives of economic development[J]. Special Zone Economy, 2011(6): 295-297. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TAJJ201106112.htm [19] 陈洪海. 基于反映象相关矩阵的评价指标筛选方法研究[J]. 中国管理科学, 2022, 30(11): 149-158. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK202211015.htmCHEN Hong-hai. Method of screening evaluation indicators based on anti-image correlation matrix[J]. Chinese Journal of Management Science, 2022, 30(11): 149-158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK202211015.htm [20] 迟国泰, 张亚京, 石宝峰. 基于Probit回归的小企业债信评级模型及实证[J]. 管理科学学报, 2016, 19(6): 136-156. https://www.cnki.com.cn/Article/CJFDTOTAL-JCYJ201606010.htmCHI Guo-tai, ZHANG Ya-jing, SHI Bao-feng. The debt rating for small enterprises based on Probit regression[J]. Journal of Management Sciences in China, 2016, 19(6): 136-156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCYJ201606010.htm [21] ZHANG Dong-xing, LUO Dang. Evaluation of regional agricultural drought vulnerability based on unbiased generalized grey relational closeness degree[J]. Grey Systems: Theory and Application, 2022, 12(4): 839-856. [22] DAI Peng. Research on blocking time problem based on fuzzy comprehensive evaluation method[J]. Journal of Physics, 2021, 1865(4): 042008. [23] LIU Yan, ECKERT C M, EARL C. A review of fuzzy AHP methods for decision-making with subjective judgements[J]. Expert Systems with Applications, 2020, 161: 113738. [24] TAVASSOLI M, SAEN R F. A new fuzzy network data envelopment analysis model for measuring efficiency and effectiveness: assessing the sustainability of railways[J]. Applied Intelligence, 2022, 52(12): 13634-13658. [25] 何金平, 高全, 施玉群. 基于云模型的大坝安全多层次综合评价方法[J]. 系统工程理论与实践, 2016, 36(11): 2977-2983. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201611024.htmHE Jin-ping, GAO Quan, SHI Yu-qun. A multi-hierarchical comprehensive evaluation method of dam safety based on cloud mode[J]. Systems Engineering—Theory and Practice, 2016, 36(11): 2977-2983. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201611024.htm [26] WEN Kun-li, YOU Mei-li, WANG J R. The modern analysis method in Kensei engineering[J]. International Journal of Kansei Information, 2010, 1(1): 43-52. [27] 赵红. 智能变电站二次设备状态评估方法研究[D]. 重庆: 重庆大学, 2016.ZHAO Hong. Research on condition evaluation method of secondary equipment in smart substation[D]. Chongqing: Chongqing University, 2016. (in Chinese) [28] 狄鹏, 倪子纯, 尹东亮. 基于云模型和证据理论的多属性决策优化算法[J]. 系统工程理论与实践, 2021, 41(4): 1061-1070. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL202104019.htmDI Peng, NI Zi-chun, YIN Dong-liang. A multi-attribute decision making optimization algorithm based on cloud model and evidence theory[J]. Systems Engineering—Theory and Practice, 2021, 41(4): 1061-1070. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL202104019.htm [29] 纪柯柯, 陈坚, 吴改选. 基于组合赋权—云模型的高速公路路网交通适应性评价[J]. 公路, 2021, 66(3): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202103041.htmJI Ke-ke, CHEN Jian, WU Gai-xuan. Traffic adaptability evaluation of expressway network based on combined weighting-cloud model[J]. Highway, 2021, 66(3): 193-200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202103041.htm [30] 李杨, 王龙飞, 程亚杰, 等. 公路网交通运行适应性评估方法[J]. 公路, 2015, 60(12): 150-157. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201512032.htmLI Yang, WANG Long-fei, CHENG Ya-jie, et al. Traffic adaptability evaluation method of highway network[J]. Highway, 2015, 60(12): 150-157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201512032.htm -