留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强盐沼泽区干湿循环作用下桥梁桩基腐蚀损伤

冯忠居 陈慧芸 王富春 胡海波 徐占慧 姚贤华

冯忠居, 陈慧芸, 王富春, 胡海波, 徐占慧, 姚贤华. 强盐沼泽区干湿循环作用下桥梁桩基腐蚀损伤[J]. 交通运输工程学报, 2023, 23(6): 156-167. doi: 10.19818/j.cnki.1671-1637.2023.06.009
引用本文: 冯忠居, 陈慧芸, 王富春, 胡海波, 徐占慧, 姚贤华. 强盐沼泽区干湿循环作用下桥梁桩基腐蚀损伤[J]. 交通运输工程学报, 2023, 23(6): 156-167. doi: 10.19818/j.cnki.1671-1637.2023.06.009
FENG Zhong-ju, CHEN Hui-yun, WANG Fu-chun, HU Hai-bo, XU Zhan-hui, YAO Xian-hua. Corrosion damage of bridge pile foundations under dry-wet cycles in strong salt marsh areas[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 156-167. doi: 10.19818/j.cnki.1671-1637.2023.06.009
Citation: FENG Zhong-ju, CHEN Hui-yun, WANG Fu-chun, HU Hai-bo, XU Zhan-hui, YAO Xian-hua. Corrosion damage of bridge pile foundations under dry-wet cycles in strong salt marsh areas[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 156-167. doi: 10.19818/j.cnki.1671-1637.2023.06.009

强盐沼泽区干湿循环作用下桥梁桩基腐蚀损伤

doi: 10.19818/j.cnki.1671-1637.2023.06.009
基金项目: 

国家重点研发计划 2018YFC1504801

青海省交通运输厅科技项目 2014-07

福建省高速公路科技项目 2018Y032

详细信息
    作者简介:

    冯忠居(1965-),男,山西万荣人,长安大学教授,工学博士,从事桥梁桩基与岩土工程研究

    通讯作者:

    陈慧芸(1995-),女,山西临汾人,西华大学讲师,工学博士

  • 中图分类号: U446.1

Corrosion damage of bridge pile foundations under dry-wet cycles in strong salt marsh areas

Funds: 

National Key Research and Development Program of China 2018YFC1504801

Science and Technology Project of Transportation Department of Qinghai Province 2014-07

Expressway Technology Project of Fujian Province 2018Y032

More Information
  • 摘要: 为探明干湿循环与强盐沼泽腐蚀作用下桥梁桩基混凝土材料损伤机理,通过室内模拟试验,研究了不同材料质量比的混凝土浸入不同浓度复合盐溶液,经干湿循环后的质量损失率、相对动弹性模量和抗侵蚀系数;基于扫描电子显微镜(SEM)、能谱仪(EDS)和化学成分分析相结合的方法,研究了桩身混凝土抗腐蚀微观机理。研究结果表明:经干湿循环后混凝土质量增长是因为在材料内部生成了钙矾石、Friedel盐等膨胀性晶体,氯盐的存在能够抑制硫酸盐对于桩基混凝土的侵蚀作用;复合盐溶液浓度不同时,经过120次的干湿循环后,水泥、碎石、砂子、水、粉煤灰、减水剂、硅灰、膨胀剂质量比为327∶1 103∶767∶170∶87∶7∶22∶44(质量比Ⅲ)的桩基混凝土试件的相对动弹性模量为92.7%,抗侵蚀系数最小为0.91,而在未添加硅灰和膨胀剂的质量比与仅添加硅灰的质量比下桩基混凝土试件的相对动弹性模量最大为89.7%,抗侵蚀系数最小为0.80,质量比Ⅲ的桩基混凝土试件的抗侵蚀性能较好,桩基混凝土试件受到膨胀力但内部未产生裂缝,说明添加硅灰和膨胀剂提升了桩基混凝土的抗侵蚀能力且可以确保桩基混凝土不产生裂缝。可见,实际工程中可综合考虑区域内腐蚀性离子类别等因素,在质量比Ⅲ的基础上进一步优化桩基混凝土的质量比。

     

  • 图  1  桥梁跨越区段

    Figure  1.  Sections crossed by bridge

    图  2  地下水和干湿循环作用

    Figure  2.  Underground water and action of dry-wet cycles

    图  3  干湿循环范围

    Figure  3.  Dry-wet cycle range

    图  4  桩基混凝土试件制作

    Figure  4.  Manufacturing of pile foundation concrete specimens

    图  5  烘箱

    Figure  5.  Oven

    图  6  混凝土动弹性模量测定仪与试件

    Figure  6.  Dynamic elastic moduli tester and specimen of concrete

    图  7  B溶液中干湿循环120次试件的破坏形态

    Figure  7.  Failure morphologies of specimens after 120 dry-wet cycles in solution B

    图  8  试件经120次干湿循环后质量损失率

    Figure  8.  Mass loss rates of specimens after 120 dry-wet cycles

    图  9  试件经120次干湿循环后的相对动弹性模量

    Figure  9.  Relative dynamic elastic moduli of specimens after 120 dry-wet cycles

    图  10  试件抗侵蚀系数变化规律

    Figure  10.  Variation laws of corrosion resistance coefficients of specimens

    图  11  质量比Ⅲ的桩基混凝土试件的SEM图

    Figure  11.  SEM image of pile foundation concrete specimen with mass ratio Ⅲ

    图  12  质量比Ⅴ的桩基混凝土试件的SEM图

    Figure  12.  SEM image of pile foundation concrete specimen with mass ratio Ⅴ

    表  1  易溶盐离子含量

    Table  1.   Contents of soluble salt ions

    水体 易溶盐离子含量/(mg·L-1)
    SO42- HCO3- Cl-
    地下水 653.3 393.9 20 767.5
    地表水 720.6 454.7 8 498.7
    下载: 导出CSV

    表  2  复合盐侵蚀溶液中盐的含量与溶液浓度

    Table  2.   Salt contents and solution concentrations in erosion solutions of composite salts

    溶液 盐含量/(mg·L-1) 溶液浓度/
    %
    Na2SO4 NaCl NaHCO3
    A 3.55 31.01 0.54 3.4
    B 10.65 93.03 1.62 9.7
    C 17.75 155.05 2.70 15.4
    下载: 导出CSV

    表  3  混凝土质量比

    Table  3.   Mass ratios of concrete

    质量比编号 材料参量/(kg·m-3)
    水泥 碎石 砂子 粉煤灰 减水剂 矿渣 硅灰 水泥基 膨胀剂
    327 1 103 767 170 87 7 22
    327 1 103 767 170 87 7 87
    327 1 103 767 170 87 7 22 44
    349 1 103 767 170 87 7 22 7
    436 1 103 767 170 5
    下载: 导出CSV

    表  4  质量比Ⅲ的桩基混凝土试件矩形区域的能谱图与化学成分分析

    Table  4.   Energy spectrum and chemical composition analysis of rectangular area of pile foundation concrete specimen with mass ratio Ⅲ

    元素 质量百分数/% 原子百分数/%
    O 34.47 63.00
    Al 5.32 5.77
    Si 8.12 8.45
    S 1.82 1.66
    Ca 23.43 17.10
    Pt 26.84 4.02
    合计 100.00 100.00
    下载: 导出CSV

    表  5  质量比Ⅴ的桩基混凝土试件矩形区域的能谱图与化学成分分析

    Table  5.   Energy spectrum and chemical composition analysis of rectangular area of pile foundation concrete specimen with mass ratio Ⅴ

    元素 质量百分数/% 原子百分数/%
    O 31.91 58.81
    Al 11.49 12.56
    Si 12.78 13.42
    Cl 1.92 1.60
    Ca 12.47 9.16
    Pt 29.43 4.45
    合计 100.00 100.00
    下载: 导出CSV

    表  6  桩基混凝土试件相对动弹性模量与抗侵蚀系数

    Table  6.   Relative dynamic elastic moduli and corrosion resistance coefficients of pile foundation concrete specimens

    质量比 相对动弹性模量/% 抗侵蚀系数
    A溶液 B溶液 C溶液 A溶液 B溶液 C溶液
    89.80 58.22 53.90 0.768 0.790 0.788
    44.23 47.67 55.34 0.858 0.822 0.846
    92.15 92.74 90.34 0.969 0.910 0.921
    40.94 55.82 41.44 0.972 0.899 0.805
    55.03 41.44 51.99 0.773 0.836 0.813
    下载: 导出CSV
  • [1] 尹世平, 李耀, 李贺东, 等. 氯盐干湿循环下TRC加固钢筋混凝土柱轴心受压性能[J]. 中国公路学报, 2017, 30(6): 230-238.

    YIN Shi-ping, LI Yao, LI He-dong, et al. Axial compression performance of reinforced concrete column strengthened with TRC under chloride dry-wet cycles[J]. China Journal of Highway and Transport, 2017, 30(6): 230-238. (in Chinese)
    [2] 甘磊, 吴健, 沈振中, 等. 硫酸盐和干湿循环作用下玄武岩纤维混凝土劣化规律[J]. 土木工程学报, 2021, 54(11): 37-46.

    GAN Lei, WU Jian, SHEN Zhen-zhong, et al. Deterioration law of basalt fiber reinforced concrete under sulfate attack and dry-wet cycle[J]. China Civil Engineering Journal, 2021, 54(11): 37-46. (in Chinese)
    [3] 冯忠居, 李维洲, 王廷武, 等. 新疆板块状盐渍土工程特性[J]. 交通运输工程学报, 2010, 10(6): 1-8. doi: 10.19818/j.cnki.1671-1637.2010.06.001

    FENG Zhong-ju, LI Wei-zhou, WANG Ting-wu, et al. Engineering characteristics of plate-like saline soil in Xinjiang[J]. Journal of Traffic and Transportation Engineering, 2010, 10(6): 1-8. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2010.06.001
    [4] NILI M, AZARIOON A, HOSSEINIAN S M. Novel internal-deterioration model of concrete exposed to freeze-thaw cycles[J]. Journal of Materials in Civil Engineering, 2017, 29(9): 04017132. doi: 10.1061/(ASCE)MT.1943-5533.0001978
    [5] 张留俊, 裘友强, 张发如, 等. 降水入渗条件下氯盐渍土水盐迁移规律[J]. 交通运输工程学报, 2023, 23(4): 116-127. doi: 10.19818/j.cnki.1671-1637.2023.04.008

    ZHANG Liu-jun, QIU You-qiang, ZHANG Fa-ru, et al. Water-salt migration rules in chlorine saline soil under precipitation infiltration[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 116-127. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2023.04.008
    [6] CHEN Hui-yun, FENG Zhong-ju, WU Min, et al. Study on the vertical bearing performances of piles on karst cave[J]. Scientific Reports, 2023, 13: 4944. doi: 10.1038/s41598-023-31458-2
    [7] 杨晓华, 张莎莎, 刘伟, 等. 粗颗粒盐渍土工程特性研究进展[J]. 交通运输工程学报, 2020, 20(5): 22-40. doi: 10.19818/j.cnki.1671-1637.2020.05.002

    YANG Xiao-hua, ZHANG Sha-sha, LIU Wei, et al. Research progress on engineering properties of coarse-grained saline soil[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 22-40. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.002
    [8] AL-AMOUDI O S B, MASLEHUDDIN M, ABDUL-AL Y A B. Role of chloride ions on expansion and strength reduction in plain and blended cements in sulfate environments[J]. Construction and Building Materials, 1995, 9(1): 25-33. doi: 10.1016/0950-0618(95)92857-D
    [9] LI Yao, YIN Shi-ping, LYU Heng-lin. Performance of interface between TRC and existing concrete under a chloride dry-wet cycle environment[J]. Journal of Central South University, 2020, 27(3): 876-890. doi: 10.1007/s11771-020-4338-6
    [10] 宿晓萍, 王清. 复合盐与干湿循环双重因素作用下混凝土耐久性试验[J]. 吉林大学学报(地球科学版), 2013, 43(3): 851-857.

    SU Xiao-ping, WANG Qing. Experiment of the concrete performance the condition of multiple salts and dry-wet cycles[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(3): 851-857. (in Chinese)
    [11] 韩学强, 詹树林, 徐强, 等. 干湿循环作用对混凝土抗氯离子渗透侵蚀性能的影响[J]. 复合材料学报, 2020, 37(1): 198-204.

    HAN Xue-qiang, ZHAN Shu-lin, XU Qiang, et al. Effect of dry-wet cycling on resistance of concrete to chloride ion permeation erosion[J]. Acta Materiae Compositae Sinica, 2020, 37(1): 198-204. (in Chinese)
    [12] 冯忠居, 胡海波, 王富春, 等. 高海拔强盐沼泽区桥梁桩基损伤现场模拟试验[J]. 交通运输工程学报, 2019, 19(3): 46-57. doi: 10.19818/j.cnki.1671-1637.2019.03.006

    FENG Zhong-ju, HU Hai-bo, WANG Fu-chun, et al. Field simulation test of bridge pile foundation damage in high altitude and strong salt marsh area[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 46-57. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.03.006
    [13] 冯忠居, 霍建维, 胡海波, 等. 高寒盐沼泽区干湿-冻融循环下桥梁桩基腐蚀损伤与承载特性[J]. 交通运输工程学报, 2020, 20(6): 135-147. doi: 10.19818/j.cnki.1671-1637.2020.06.012

    FENG Zhong-ju, HUO Jian-wei, HU Hai-bo, et al. Corrosion damage and bearing characteristics of bridge pile foundations under dry-wet-freeze-thaw cycles in alpine salt marsh areas[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 135-147. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.012
    [14] 冯忠居, 陈思晓, 徐浩, 等. 基于灰色系统理论的高寒盐沼泽区混凝土耐久性评估[J]. 交通运输工程学报, 2018, 18(6): 18-26. doi: 10.19818/j.cnki.1671-1637.2018.06.003

    FENG Zhong-ju, CHEN Si-xiao, XU Hao, et al. Durability evaluation of concrete in alpine salt marsh area based on gray system theory[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 18-26. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2018.06.003
    [15] PILEHVAR S, SZCZOTOK A M, RODRIGIEZ J F, et al. Effect of freeze-thaw cycles on the mechanical behavior of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials[J]. Construction and Building Materials, 2019, 200(10): 94-103.
    [16] 王海龙, 董宜森, 孙晓燕, 等. 干湿交替环境下混凝土受硫酸盐侵蚀劣化机理[J]. 浙江大学学报(工学版), 2012, 46(7): 1255-1261.

    WANG Hai-long, DONG Yi-sen, SUN Xiao-yan, et al. Damage mechanism of concrete deteriorated by sulfate attack in wet-dry cycle environment[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(7): 1255-1261. (in Chinese)
    [17] 姚贤华, 冯忠居, 王富春, 等. 复合盐浸下多元外掺剂-混凝土抗干湿-冻融循环性能[J]. 复合材料学报, 2018, 35(3): 690-698.

    YAO Xian-hua, FENG Zhong-ju, WANG Fu-chun, et al. Property of multiple admixture-concrete in multi-salt soaking under wetting-drying and freezing-thawing cycles[J]. Acta Materiae Compositae Sinica, 2018, 35(3): 690-698. (in Chinese)
    [18] 孙迎召, 牛荻涛, 姜磊, 等. 干湿循环条件下混凝土硫酸盐侵蚀损伤分析[J]. 硅酸盐通报, 2013, 32(7): 1405-1409.

    SUN Ying-zhao, NIU Di-tao, JIANG Lei, et al. Damage layer thickness of concrete under wet/dry cycling measured by ultrasonic method[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(7): 1405-1409. (in Chinese)
    [19] FIROUZI A, ABDOLHOSSEINI M, AYAZIAN R. Service life prediction of corrosion-affected reinforced concrete columns based on time-dependent reliability analysis[J]. Engineering Failure Analysis, 2020, 117: 104944. doi: 10.1016/j.engfailanal.2020.104944
    [20] 高润东, 赵顺波, 李庆斌, 等. 干湿循环作用下混凝土硫酸盐侵蚀劣化机理试验研究[J]. 土木工程学报, 2010, 43(2): 48-54.

    GAO Run-dong, ZHAO Shun-bo, LI Qing-bin, et al. Experimental study of the deterioration mechanism of concrete under sulfate attack in wet-dry cycles[J]. China Civil Engineering Journal, 2010, 43(2): 48-54. (in Chinese)
    [21] 姜磊, 牛荻涛. 硫酸盐侵蚀与干湿循环下混凝土本构关系研究[J]. 中国矿业大学学报, 2017, 46(1): 66-73.

    JIANG Lei, NIU Di-tao. Study of constitutive relation of concrete under sulfate attack and drying-wetting cycles[J]. Journal of China University of Mining and Technology, 2017, 46(1): 66-73. (in Chinese)
    [22] 刘道维, 刘本义, 李向东, 等. 硫酸盐和干湿循环耦合作用下混凝土性能研究[J]. 水利水运工程学报, 2015(4): 69-74.

    LIU Dao-wei, LIU Ben-yi, LI Xiang-dong, et al. Property analysis of concrete under coupling action of sulfate and wet-dry cycles[J]. Hydro-Science and Engineering, 2015(4): 69-74. (in Chinese)
    [23] FENG Zhong-ju, HUO Jian-wei, HU Hai-bo, et al. Research on corrosion damage and bearing characteristics of bridge pile foundation concrete under a dry-wet-freeze-thaw cycle[J]. Advances in Civil Engineering, 2021, 2021: 1-13.
    [24] BASSUONI M T, NEHDI M L. Durability of self-consolidating concrete to sulfate attack under combined cyclic environments and flexural loading[J]. Cement and Concrete Research, 2009, 39(3): 206-226. doi: 10.1016/j.cemconres.2008.12.003
    [25] GAO Jian-ming, YU Zhen-xin, SONG Lu-guang, et al. Durability of concrete exposed to sulfate attack under flexural loading and drying-wetting cycles[J]. Construction and Building Materials, 2013, 39: 33-38. doi: 10.1016/j.conbuildmat.2012.05.033
    [26] 乔宏霞, 周茗如, 何忠茂, 等. 硫酸盐环境中混凝土的性能研究[J]. 应用基础与工程科学学报, 2009, 17(1): 77-84.

    QIAO Hong-xia, ZHOU Ming-ru, HE Zhong-mao, et al. Research on performance of concrete in sulfate environment[J]. Journal of Basic Science and Engineering, 2009, 17(1): 77-84. (in Chinese)
    [27] 冯忠居, 郭穗柱, 孟莹莹, 等. 盐沼泽区冻融作用下桥梁桩基腐蚀损伤模拟试验[J]. 哈尔滨工业大学学报, 2021, 53(9): 69-78.

    FENG Zhong-ju, GUO Sui-zhu, MENG Ying-ying, et al. Simulation test on corrosion damage of bridge pile foundation in freeze-thaw area of salt swamp[J]. Journal of Harbin Institute of Technology, 2021, 53(9): 69-78. (in Chinese)
    [28] 姚贤华. 高寒盐沼泽区公路桥梁桩基的力学特性及其安全评价[D]. 西安: 长安大学, 2018.

    YAO Xian-hua. Mechanics properties and safety evaluation of highway bridge pile in Alpine salt marshes[D]. Xi'an: Chang'an University, 2018. (in Chinese)
    [29] 余红发. 盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法[D]. 南京: 东南大学, 2004.

    YU Hong-fa. Study on high performance concrete in salt lake: durability, mechanism and service life prediction[D]. Nanjing: Southeast University, 2004. (in Chinese)
    [30] 冯忠居, 陈露, 孔元元, 等. 青海盐沼泽环境下混凝土现场腐蚀试验[J]. 长江科学院院报, 2023, 40(5): 166-172.

    FENG Zhong-ju, CHEN Lu, KONG Yuan-yuan, et al. Field corrosion test of concrete in salt swamp environment in Qinghai[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(5): 166-172. (in Chinese)
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  279
  • HTML全文浏览量:  66
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-15
  • 刊出日期:  2023-12-25

目录

    /

    返回文章
    返回