Flexural behavior of pre-damaged UHPC-HPC composite beams in chloride corrosion environment
-
摘要:
为了提高普通钢筋混凝土梁的耐久性,设计了一种超高性能混凝土(UHPC)-高性能混凝土(HPC)组合梁新型结构,开展了锈蚀后UHPC-HPC组合梁的抗弯性能试验,研究了氯盐侵蚀后组合梁抗弯承载力降低的机理,分析了腐蚀程度、截面形式与预损伤对其抗弯性能的影响;引入钢筋屈服强度折减系数、截面积折减系数与混凝土预损伤系数,提出了锈蚀后UHPC-HPC组合梁抗弯承载力计算方法,并验证了计算方法的可行性。分析结果表明:锈蚀后梁体抗弯承载力降低主要原因为钢筋抗拉强度下降,梁体刚度退化与韧性减弱,钢纤维阻裂效果削弱;锈蚀后UHPC-HPC组合梁的破坏表现为跨中附近出现1条主裂缝或加载点附近出现2条主裂缝;UHPC-HPC组合梁的受力过程分为线弹性、裂缝发展和屈服3个阶段,梁体截面混凝土应变基本符合平截面假定;侵蚀时间越长,组合梁的开裂荷载和承载力降低越大,通电快速侵蚀10 d时,降幅分别达16.2%和10.9%;锈蚀后T形梁比矩形梁开裂早,前者的开裂荷载比后者降低8.1%,后期刚度下降较快;预损伤显著影响梁的整体刚度,预加载后梁的整体刚度降低,混凝土损伤后的预损伤系数为0.984;锈蚀率越大,钢筋的屈服强度与截面积折减系数越小,变化趋势符合二次抛物线;锈蚀后UHPC-HPC组合梁抗弯承载力的计算值与实测值吻合良好,两者之比的平均值为0.998,标准差为0.020。
Abstract:In order to improve the durability of ordinary reinforced concrete beams, a new structure of ultra-high performance concrete (UHPC)-high performance concrete (HPC) composite beam was designed, and the flexural behavior of the UHPC-HPC composite beam after chloride corrosion was tested. The decrease mechanism of flexural capacity of the composite beam after chloride erosion was studied, and the effects of erosion degree, section form and pre-damage on the flexural behavior were analyzed. The yield strength reduction coefficient, cross-sectional area reduction coefficient of steel bar and pre-damage coefficient of concrete were introduced to propose the calculation method of flexural capacity of the UHPC-HPC composite beam after corrosion, and the feasibility of the calculation method was verified. Analysis results show that the main reasons for the decrease in the flexural capacity of the beam after corrosion are the decrease in the tensile strength of steel bars, the degradation of the stiffness and toughness of the beam, and the weakening of the crack resistance effect of steel fibers. The failure of the UHPC-HPC composite beam after corrosion is characterized by one main crack near the mid-span or two main cracks near the loading point. The stress process of the UHPC-HPC composite beam is divided into three stages: linear elasticity, crack development and yield. The concrete strain of the beam section basically conforms to the assumption of plane section. The longer the erosion time is, the more the cracking load and the flexural capacity reduce. When the beam is energized and eroded rapidly for 10 d, the reductions reach 16.2% and 10.9%, respectively. The T-beam cracks earlier than the rectangular beam, the cracking load of the former is 8.1% smaller than that of the later, and the stiffness decreases faster in the later stage after corrosion. The pre-damage significantly affects the overall stiffness of the beam, the overall stiffness decreases after pre-loading, and the pre-damage coefficient after the concrete damage is 0.984. The larger the corrosion rate is, the smaller the yield strength and the cross-sectional area reduction coefficient of the steel bar are, and the change trend conforms to the quadratic parabola. The calculated flexural capacity of the UHPC-HPC composite beam after corrosion is in good agreement with the measured value, the average ratio of the two is 0.998, and the standard deviation is 0.020.
-
表 1 UHPC-HPC组合梁试件参数
Table 1. Parameters of UHPC-HPC composite beam specimens
试验梁编号 截面形式 加载方式 通电时间/d L1 T形梁 预加载 0 L2 T形梁 未加载 6 L3 T形梁 预加载 6 L4 T形梁 预加载 8 L5 T形梁 预加载 10 L6 矩形梁 预加载 10 表 2 UHPC配合比
Table 2. Mix proportion of UHPC
材料 预混料 减水剂 水 钢纤维 单位质量/(kg·m-3) 2 232 16 199 195 表 3 HPC配合比
Table 3. Mix proportion of HPC
材料 水泥 砂 骨料 矿粉 粉煤灰 水 减水剂 阻锈剂 单位质量/(kg·m-3) 308 693 1 130 44 88 132 5.3 5.3 表 4 混凝土材料性能
Table 4. Concrete material properties
混凝土标号 抗压强度/MPa 抗拉强度/MPa 弹性模量/GPa C45 46.2 3.0 34.50 C150 152.0 10.0 45.58 表 5 钢筋材料性能
Table 5. Steel bar material properties
钢筋型号 直径/mm 屈服强度/MPa 极限强度/MPa HPB300 8 361.2 506.1 HRB400 12 459.3 597.1 表 6 试验结果
Table 6. Test results
试验梁编号 开裂荷载/kN 极限荷载/kN 破坏形式 L1 37.0 128 适筋破坏 L2 41.5 123 适筋破坏 L3 38.5 121 适筋破坏 L4 35.0 119 适筋破坏 L5 31.0 116 适筋破坏 L6 34.0 114 适筋破坏 表 7 混凝土预损伤系数对比
Table 7. Comparison of concrete pre-damage coefficients
来源 PJX, Y/kN PJX, W/kN λ 文献[28] 20.7 21.9 0.945 本文 121.0 123.0 0.984 表 8 锈蚀后UHPC-HPC组合梁抗弯承载力
Table 8. Flexural capacities of UHPC-HPC composite beams after corrosion
参数 L1 L3 L4 L5 L6 φ1 0.979 6 0.969 4 0.964 7 0.959 0 φ2 0.979 2 0.968 4 0.963 4 0.957 2 λ 0.98 0.98 0.98 0.98 Mj/(kN·m) 18.70 18.22 17.98 17.87 16.68 Ms/(kN·m) 19.20 18.15 17.85 17.40 17.10 Mj/Ms 0.974 1.004 1.008 1.027 0.976 表 9 钢筋屈服强度计算值与实测值对比
Table 9. Comparison of calculated and measured tensile strengths of steel bar
锈蚀率/% 2.08 3.16 3.66 4.28 fj/MPa 449.9 445.2 443.1 440.5 fs/MPa 455.4 451.0 449.5 449.1 fj/fs 0.988 0.987 0.986 0.981 表 10 抗弯承载力计算结果与试验结果对比
Table 10. Comparison of calculated and experimental results of flexural capacity
文献 [30] [31] 试验梁尺寸/mm 1 800×150×300 2 000×150×250 试验梁编号 L7 L8 L9 CL50-10-1 CL50-10-2 CL65-10-1 实际锈蚀率/% 6.34 8.00 11.92 7.44 8.42 11.13 混凝土强度/MPa 19.0 19.0 18.0 45.4 45.4 45.4 钢筋屈服强度/MPa 335 335 335 383.7 383.7 383.7 极限荷载/kN 150 145 137 198.4 196.3 184.7 Mj/(kN·m) 51.09 49.71 46.66 56.54 55.63 53.22 Ms/(kN·m) 55.05 53.29 49.22 59.52 58.89 57.15 Mj/Ms 0.928 0.933 0.948 0.950 0.945 0.931 -
[1] 路承功, 魏智强, 乔宏霞, 等. 盐渍土地区混凝土加速寿命试验可靠性分析方法[J]. 中南大学学报(自然科学版), 2021, 52(3): 1017-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202103032.htmLU Cheng-gong, WEI Zhi-qiang, QIAO Hong-xia, et al. Reliability analysis method of accelerated life test of concrete in saline soil area[J]. Journal of Central South University (Science and Technology), 2021, 52(3): 1017-1026. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202103032.htm [2] ZHANG Huai-an, YAO Yi-ming, ZHU De-ju, et al. Tensile mechanical properties of basalt fiber reinforced polymer composite under varying strain rates and temperatures[J]. Polymer Testing, 2016, 51: 29-39. doi: 10.1016/j.polymertesting.2016.02.006 [3] 吴林键, 鞠学莉, 马原飞, 等. 钢筋对混凝土中氯离子扩散的阻挡效应预测模型[J]. 建筑材料学报, 2021, 24(2): 296-303, 332. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX202102011.htmWU Lin-jian, JU Xue-li, MA Yuan-fei, et al. Prediction model of chloride diffusion in concrete considering the blocking effects of rebar[J]. Journal of Building Materials, 2021, 24(2): 296-303, 332. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX202102011.htm [4] 鲍玖文, 魏佳楠, 张鹏, 等. 海洋环境下混凝土抗氯离子侵蚀的相似性研究进展[J]. 硅酸盐学报, 2020, 48(5): 689-704. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202005012.htmBAO Jiu-wen, WEI Jia-nan, ZHANG Peng, et al. Research progress of similarity of resistance to chloride ingress into concrete exposed to marine environment[J]. Journal of the Chinese Ceramic Society, 2020, 48(5): 689-704. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202005012.htm [5] 吴智深, 刘加平, 邹德辉, 等. 海洋桥梁工程轻质、高强、耐久性结构材料现状及发展趋势研究[J]. 中国工程科学, 2019, 21(3): 31-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201903007.htmWU Zhi-shen, LIU Jia-ping, ZOU De-hui, et al. Status quo and development trend of light-weight, high-strength, and durable structural materials applied in marine bridge engineering[J]. Strategic Study of CAE, 2019, 21(3): 31-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201903007.htm [6] JALAL M, POULADKHAN A R, NOROUZI H, et al. Chloride penetration, water absorption and electrical resistivity of high performance concrete containing nano silica and silica fume[J]. Journal of American Science, 2012, 8(4): 278-284. [7] LEE B, KIM G, NAM J, et al. Compressive strength, resistance to chloride-ion penetration and freezing/thawing of slag-replaced concrete and cementless slag concrete containing desulfurization slag activator[J]. Construction and Building Materials, 2016, 128: 341-348. doi: 10.1016/j.conbuildmat.2016.10.075 [8] 杨义, 童张法, 冯庆革, 等. 大掺量高性能混凝土的抗氯离子渗透特性[J]. 武汉理工大学学报, 2010, 32(15): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201015002.htmYANG Yi, TONG Zhang-fa, FENG Qing-ge, et al. Resistance to the penetration of chloride ions of high performance concrete with high volume mineral admixture[J]. Journal of Wuhan University of Technology, 2010, 32(15): 9-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201015002.htm [9] 邵旭东, 邱明红, 晏班夫, 等. 超高性能混凝土在国内外桥梁工程中的研究与应用进展[J]. 材料导报, 2017, 31(23): 33-43. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201723004.htmSHAO Xu-dong, QIU Ming-hong, YAN Ban-fu, et al. A review on the research and application of ultra-high performance concrete in bridge engineering around the world[J]. Materials Reports, 2017, 31(23): 33-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201723004.htm [10] 杜修力, 金浏, 张仁波. 力学荷载对混凝土中氯离子渗透扩散行为影响述评[J]. 建筑结构学报, 2016, 37(1): 107-125. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201601015.htmDU Xiu-li, JIN Liu, ZHANG Ren-bo. Review on effect of external mechanical loadings on chloride penetration and diffusion into concrete[J]. Journal of Building Structures, 2016, 37(1): 107-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201601015.htm [11] DOBIAS D, PERNICOVA R, MANDLIK T. Water transport properties and depth of chloride penetration in ultra high performance concrete[J]. Key Engineering Materials, 2016, 711: 137-142. doi: 10.4028/www.scientific.net/KEM.711.137 [12] PYO S, KOH T, TAFESSE M, et al. Chloride-induced corrosion of steel fiber near the surface of ultra-high performance concrete and its effect on flexural behavior with various thickness[J]. Construction and Building Materials, 2019, 224: 206-213. doi: 10.1016/j.conbuildmat.2019.07.063 [13] 安明喆, 李同乐. 活性粉末混凝土损伤后的抗氯离子渗透性能研究[J]. 混凝土, 2012(3): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201203007.htmAN Ming-zhe, LI Tong-le. Resistance to chloride ion penetration of reactive powder concrete after injury[J]. Concrete, 2012(3): 15-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201203007.htm [14] 刘钊, 雷海鹏, 罗杰, 等. 30 m先张预应力双T梁抗弯性能足尺模型试验研究[J]. 桥梁建设, 2022, 52(5): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202205003.htmLIU Zhao, LEI Hai-peng, LUO Jie, et al. Full-scale experimental test on flexural behavior of a 30 m-long pretensioned concrete double-tee girder[J]. Bridge Construction, 2022, 52(5): 14-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202205003.htm [15] LI Wang-wang, JI Wen-yu, AN Ming-zhe, et al. Flexural performance of composite prestressed UHPC-NC T-girders[J]. Journal of Bridge Engineering, 2020, 25(9): 04020064. doi: 10.1061/(ASCE)BE.1943-5592.0001600 [16] 季文玉, 李旺旺, 王珏. 预应力RPC-NC叠合梁抗弯延性试验分析[J]. 哈尔滨工业大学学报, 2017, 49(6): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201706004.htmJI Wen-yu, LI Wang-wang, WANG Jue. Experimental analysis on flexural ductility of prestressed RPC-NC composite beam[J]. Journal of Harbin Institute of Technology, 2017, 49(6): 21-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201706004.htm [17] 过民龙, 季文玉. 活性粉末混凝土与普通混凝土叠合T梁静载抗弯性能研究[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(3): 233-244. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201703002.htmGUO Min-long, JI Wen-yu. Bending behavior of RPC-NC composite T-girder under static load[J]. Journal of Tianjin University (Science and Technology), 2017, 50(3): 233-244. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201703002.htm [18] 刘超, 孙启鑫, 邹宇罡. 超高性能混凝土-混凝土组合简支梁弯曲性能试验[J]. 同济大学学报(自然科学版), 2020, 48(5): 664-672, 701. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202005005.htmLIU Chao, SUN Qi-xin, ZOU Yu-gang. Experimental study on bending performance of ultra-high performance concrete-normal concrete composite simply supported beam[J]. Journal of Tongji University (Natural Science), 2020, 48(5): 664-672, 701. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202005005.htm [19] SUN Qi-xin, LIU Chao. Experimental study and calculation method on the flexural resistance of reinforced concrete beam strengthened using high strain-hardening ultra high performance concrete[J]. Structural Concrete, 2021, 22(3): 1741-1759. doi: 10.1002/suco.202000592 [20] CHEN Fei, GAO Jian-ming, QI Bing, et al. Degradation progress of concrete subject to combined sulfate-chloride attack under drying-wetting cycles and flexural loading[J]. Construction and Building Materials, 2017, 151: 164-171. doi: 10.1016/j.conbuildmat.2017.06.074 [21] HARICHE L, BALLIM Y, BOUHICHA M, et al. Effects of reinforcement configuration and sustained load on the behaviour of reinforced concrete beams affected by reinforcing steel corrosion[J]. Cement and Concrete Composites, 2012, 34(10): 1202-1209. doi: 10.1016/j.cemconcomp.2012.07.010 [22] 孙洋, 刁波, 张笑, 等. 侵蚀与荷载耦合作用下砼梁承载力与延性试验[J]. 哈尔滨工业大学学报, 2010, 42(12): 1972-1976. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201012027.htmSUN Yang, DIAO Bo, ZHANG Xiao, et al. Experimental study on bearing capacity and ductility of reinforced concrete beam in multi-aggressive and loading coupling[J]. Journal of Harbin Institute of Technology, 2010, 42(12): 1972-1976. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201012027.htm [23] 刘廷滨, 贾汝波, 张晨宇, 等. 锈蚀RC梁抗弯承载力计算方法研究[J]. 西南交通大学学报, 2020, 55(4): 789-798. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202004015.htmLIU Ting-bin, JIA Ru-bo, ZHANG Chen-yu, et al. Bending capacity calculation method for corroded reinforced concrete beams[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 789-798. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202004015.htm [24] 马亚飞, 刘宇, 郭忠照, 等. 考虑黏结性退化的锈蚀PC梁抗弯承载力计算方法[J]. 防灾减灾工程学报, 2020, 40(4): 639-646. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202004019.htmMA Ya-fei, LIU Yu, GUO Zhong-zhao, et al. Calculation method for flexural capacity of corroded PC beams considering bond degradation[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(4): 639-646. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202004019.htm [25] JIANG Chao, DING Hao, GU Xiang-lin, et al. Failure mode-based calculation method for bending bearing capacities of normal cross-sections of corroded reinforced concrete beams[J]. Engineering Structures, 2022, 258: 114113. doi: 10.1016/j.engstruct.2022.114113 [26] 金伟良, 夏晋, 蒋遨宇, 等. 锈蚀钢筋混凝土梁受弯承载力计算模型[J]. 土木工程学报, 2009, 42(11): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200911012.htmJIN Wei-liang, XIA Jin, JIANG Ao-yu, et al. Flexural capacity of corrosion-damaged RC beams[J]. China Civil Engineering Journal, 2009, 42(11): 64-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200911012.htm [27] 余国庆, 王凯, 王宇航, 等. 超高性能混凝土功能梯度复合梁抗弯性能研究[J]. 铁道学报, 2022, 44(10): 161-170. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202210020.htmYU Guo-qing, WANG Kai, WANG Yu-hang, et al. Study on flexural behavior of ultra-high performance concrete functionally graded composite beams[J]. Railway Journal, 2022, 44(10): 161-170. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202210020.htm [28] 胡大琳, 徐怀存, 张航, 等. 初始弯曲应力对冻融-碳化后钢筋混凝土梁承载力影响分析[J]. 长安大学学报(自然科学版), 2020, 40(5): 38-47. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202005004.htmHU Da-lin, XU Huai-cun, ZHANG Hang, et al. Analysis on influence of initial bending stress on bearing capacity of reinforced concrete beam after freeze-thaw carbonization[J]. Journal of Chang'an University (Natural Science Edition), 2020, 40(5): 38-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202005004.htm [29] 赵羽习. 钢筋锈蚀引起混凝土结构锈裂综述[J]. 东南大学学报(自然科学版), 2013, 43(5): 1122-1134. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201305035.htmZHAO Yu-xi. State-of-art of corrosion-induced cracking of reinforced concrete structures[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(5): 1122-1134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201305035.htm [30] 彭建新, 胡守旺, 宋波, 等. 锈蚀RC梁抗弯性能试验与数值分析[J]. 中国公路学报, 2015, 28(6): 34-41, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201506006.htmPENG Jian-xin, HU Shou-wang, SONG Bo, et al. Experimental and numerical analysis of flexural performance for corroded RC beams[J]. China Journal of Highway and Transport, 2015, 28(6): 34-41, 50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201506006.htm [31] LIU Yang, JIANG Nan, DENG Yang, et al. Flexural experiment and stiffness investigation of reinforced concrete beam under chloride penetration and sustained loading[J]. Construction and Building Materials, 2016, 117: 302-310. doi: 10.1016/j.conbuildmat.2016.04.110