留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢桥面板U肋-盖板焊缝疲劳裂纹萌生仿真

赵秋 唐琨 李英豪 邓俊逸

赵秋, 唐琨, 李英豪, 邓俊逸. 钢桥面板U肋-盖板焊缝疲劳裂纹萌生仿真[J]. 交通运输工程学报, 2024, 24(1): 131-145. doi: 10.19818/j.cnki.1671-1637.2024.01.008
引用本文: 赵秋, 唐琨, 李英豪, 邓俊逸. 钢桥面板U肋-盖板焊缝疲劳裂纹萌生仿真[J]. 交通运输工程学报, 2024, 24(1): 131-145. doi: 10.19818/j.cnki.1671-1637.2024.01.008
ZHAO Qiu, TANG Kun, LI Ying-hao, DENG Jun-yi. Simulation on fatigue crack initiation at U rib-cover plate welded joints of steel bridge decks[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 131-145. doi: 10.19818/j.cnki.1671-1637.2024.01.008
Citation: ZHAO Qiu, TANG Kun, LI Ying-hao, DENG Jun-yi. Simulation on fatigue crack initiation at U rib-cover plate welded joints of steel bridge decks[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 131-145. doi: 10.19818/j.cnki.1671-1637.2024.01.008

钢桥面板U肋-盖板焊缝疲劳裂纹萌生仿真

doi: 10.19818/j.cnki.1671-1637.2024.01.008
基金项目: 

国家自然科学基金项目 51478120

福建省自然科学基金项目 2019J01232

详细信息
    作者简介:

    赵秋(1976-),男,吉林通榆人,福州大学教授,工学博士,从事钢结构与组合结构桥梁性能研究

  • 中图分类号: U443.31

Simulation on fatigue crack initiation at U rib-cover plate welded joints of steel bridge decks

Funds: 

National Natural Science Foundation of China 51478120

Natural Science Foundation of Fujian Province 2019J01232

More Information
  • 摘要:

    为建立适用于钢桥面板U肋-盖板焊缝疲劳裂纹萌生分析方法,以Roe-Siegmund循环内聚力模型为基础,考虑混合加载模式下的内聚力参数转换,对ABAQUS进行二次开发,形成反映疲劳累计损伤的VUMAT子程序;通过试验数据获得了Q345钢材对应的焊接区域材料内聚力参数,基于Voronoi图法、焊接区域晶粒微观形态与力学特性建立了U肋-盖板焊缝焊趾处微观晶粒组织,并与宏观二维平面应变模型合并,模拟了多尺度疲劳裂纹萌生;结合等效结构应力法和线弹性断裂力学裂纹扩展理论,考虑初始缺陷形态和疲劳断裂临界标准反推了不同应力水平下的累积内聚力长度,进而得到疲劳裂纹萌生寿命的计算方法。分析结果表明:采用提出的方法模拟U肋-盖板焊缝焊趾裂纹萌生行为时,裂纹在焊趾处萌生并垂直于顶板表面进行扩展,形成了穿晶断裂模式,微观晶粒组织应力分布随裂纹萌生及短裂纹扩展而不断变化,且随着微观晶粒组织分布和力学特性的随机性变化,仿真结果中的短裂纹扩展路径细节与临界循环次数均不相同;反推得到的累积内聚力长度随初始缺陷形状比、长裂纹扩展临界深度、微观晶粒组织分布及其力学特性以及所处应力幅值的不同产生变化,考虑上述因素获取的累积内聚力长度-等效结构应力幅拟合曲线能够获取对应的裂纹萌生寿命。由此可知,建立的多尺度疲劳裂纹萌生仿真分析方法可为钢桥面板疲劳裂纹萌生寿命的获取提供新的解决路径。

     

  • 图  1  内聚力模型

    Figure  1.  Cohesive zone model

    图  2  双线性型牵引分离定理

    Figure  2.  TSL of bilinear form

    图  3  混合模式下的牵引分离定理

    Figure  3.  TSL in mixed mode

    图  4  循环内聚力模型本构关系

    Figure  4.  Constitutive relation of cyclic cohesive zone model

    图  5  疲劳累计损伤子程序计算流程

    Figure  5.  Calculation flow of cumulative fatigue damage subroutine

    图  6  热影响区和焊缝的法向临界应力

    Figure  6.  Normal critical stresses of heat affected zone and welded joint

    图  7  U肋-盖板焊缝构造细节模型

    Figure  7.  Structural detail model of U rib-cover plate welded joint

    图  8  焊趾处多尺度裂纹萌生仿真模型

    Figure  8.  Multi-scale crack initiation simulation model of weld toe

    图  9  微观晶粒组织Mises应力

    Figure  9.  Mises stresses in microscopic grain structures

    图  10  微观晶粒组织x方向主应力变化

    Figure  10.  Variations of principal stresses in x direction of microscopic grain structures

    图  11  焊趾微观晶粒短裂纹扩展路径

    Figure  11.  Short crack propagation paths of microscopic grains at weld toe

    图  12  不同仿真组的裂纹萌生与短裂纹扩展仿真结果

    Figure  12.  Simulation results of crack initiations and short crack propagations for different simulation groups

    图  13  不同仿真组裂纹扩展至0.3 mm时的循环加载次数及其分布

    Figure  13.  Cyclic loading numbers and their distributions for different simulation groups when cracks propagate to 0.3 mm

    图  14  裂纹萌生寿命获取方法

    Figure  14.  Obtaining method of crack initiation life

    图  15  U肋-盖板焊趾缺陷植入流程

    Figure  15.  Insertion process of U rib-cover plate weld toe defect

    图  16  不同仿真结果在1.5 MPa均布荷载作用下的n

    Figure  16.  n of different simulation results under uniformly distributed load of 1.5 MPa

    图  17  不同荷载作用下n的反推值

    Figure  17.  Backpropageted n under different loads

    表  1  等效结构应力和全阶段寿命

    Table  1.   Equivalent structural stresses and full stage lives

    荷载/MPa 膜应力/MPa 弯曲应力/MPa 等效结构应力幅值/MPa 全阶段寿命/万次
    1.0 -1.11×10-3 68.55 94.09 1 901.70
    1.5 -1.04×10-3 102.83 141.14 534.50
    2.0 -2.23×10-3 137.11 188.19 217.22
    2.5 -2.79×10-3 171.38 235.23 108.04
    3.0 -3.34×10-3 205.66 282.28 61.06
    3.5 -3.90×10-3 239.94 329.32 37.69
    4.0 -4.46×10-3 274.21 376.37 24.81
    4.5 -5.01×10-3 308.49 423.41 17.16
    5.0 -5.57×10-3 342.76 470.46 12.34
    5.5 -6.13×10-3 377.04 517.51 9.16
    6.0 -6.68×10-3 411.32 564.55 6.97
    下载: 导出CSV

    表  2  不同荷载作用下的剩余疲劳寿命

    Table  2.   Residual fatigue lives under different loads

    形状比 临界破坏深度/mm 不同荷载(MPa)作用下的剩余疲劳寿命/万次
    1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
    0.2 8.0 319.33 97.80 45.65 25.32 14.54 9.95 6.66 4.56 3.38 2.68 1.96
    10.8 457.38 133.43 66.52 33.22 19.04 13.53 9.48 6.42 4.45 3.75 2.81
    0.3 8.0 345.46 103.39 47.15 26.43 15.73 10.72 7.05 5.05 3.76 2.87 2.20
    10.8 477.93 135.11 65.78 34.96 21.93 14.58 9.99 7.20 4.94 3.84 2.93
    0.4 8.0 361.21 113.60 50.26 27.49 16.12 10.63 7.25 5.13 3.73 2.97 2.26
    10.8 487.30 157.35 65.28 35.95 22.38 13.54 10.20 6.56 5.15 3.93 3.06
    0.5 8.0 362.23 115.26 51.07 28.55 16.47 11.05 7.61 5.20 4.07 3.12 2.42
    10.8 502.06 161.06 70.10 37.33 22.02 14.72 10.30 6.96 5.45 4.25 3.39
    下载: 导出CSV

    表  3  1.5 MPa均布荷载作用下的n

    Table  3.   n under uniformly distributed load of 1.5 MPa

    形状比 临界深度/mm 全阶段寿命/万次 剩余疲劳寿命/万次 裂纹萌生寿命/万次 n
    0.2 8.0 534.50 97.80 436.70 94 955
    10.8 133.43 401.07 87 209
    0.3 8.0 103.39 431.11 93 741
    10.8 135.11 399.39 86 843
    0.4 8.0 113.60 420.90 91 520
    10.8 157.35 377.16 82 008
    0.5 8.0 115.26 419.25 91 160
    10.8 161.06 373.44 81 201
    下载: 导出CSV
  • [1] 张清华, 卜一之, 李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3): 14-30, 39. doi: 10.3969/j.issn.1001-7372.2017.03.002

    ZHANG Qing-hua, BU Yi-zhi, LI Qiao. Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 14-30, 39. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.002
    [2] 王春生, 翟慕赛, 唐友明, 等. 钢桥面板疲劳裂纹耦合扩展机理的数值断裂力学模拟[J]. 中国公路学报, 2017, 30(3): 82-95. doi: 10.3969/j.issn.1001-7372.2017.03.009

    WANG Chun-sheng, ZHAI Mu-sai, TANG You-ming, et al. Numerical fracture mechanical simulation of fatigue crack coupled propagation mechanism for steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 82-95. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.009
    [3] 张清华, 金正凯, 刘益铭, 等. 钢桥面板纵肋与顶板焊接细节疲劳裂纹扩展三维模拟方法[J]. 中国公路学报, 2018, 31(1): 57-66. doi: 10.3969/j.issn.1001-7372.2018.01.007

    ZHANG Qing-hua, JIN Zheng-kai, LIU Yi-ming, et al. 3-D Simulation method for fatigue crack propagation in rib-to-deck welded joints of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2018, 31(1): 57-66. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.01.007
    [4] 刘益铭, 张清华, 崔闯, 等. 正交异性钢桥面板三维疲劳裂纹扩展数值模拟方法[J]. 中国公路学报, 2016, 29(7): 89-95. doi: 10.3969/j.issn.1001-7372.2016.07.011

    LIU Yi-ming, ZHANG Qing-hua, CUI Chuang, et al. Numerical simulation method for 3D fatigue crack propagation of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2016, 29(7): 89-95. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.07.011
    [5] CUI Chuang, XU You-lin, ZHANG Qing-hua. Multi-scale fatigue damage evolution in orthotropic steel deck of cable-stayed bridges[J]. Engineering Structures, 2021, 237: 112144. doi: 10.1016/j.engstruct.2021.112144
    [6] JIANG Fei, DING You-liang, SONG Yong-sheng, et al. Digital twin-driven framework for fatigue life prediction of steel bridges using a probabilistic multiscale model: application to segmental orthotropic steel deck specimen[J]. Engineering Structures, 2021, 241: 112461. doi: 10.1016/j.engstruct.2021.112461
    [7] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104. doi: 10.1016/0022-5096(60)90013-2
    [8] BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7: 55-129.
    [9] YANG Q D, SHIM D J, SPEARING S M. A cohesive zone model for low cycle fatigue life prediction of solder joints[J]. Microelectronic Engineering, 2004, 75(1): 85-95. doi: 10.1016/j.mee.2003.11.009
    [10] 杨静, 胡志伟, 刘栋, 等. 微观结构下多晶材料的疲劳损伤模型及裂纹的数值模拟方法[J]. 机械科学与技术, 2020, 39(11): 1788-1793. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202011023.htm

    YANG Jing, HU Zhi-wei, LIU Dong, et al. Model for fatigue damage and numerical simulation method of cracks for polycrystalline material under microstructure[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(11): 1788-1793. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202011023.htm
    [11] GHODRATI M, AHMADIAN M, MIRZAEIFAR R. Three- dimensional study of rolling contact fatigue using crystal plasticity and cohesive zone method[J]. International Journal of Fatigue, 2019, 128: 105208. doi: 10.1016/j.ijfatigue.2019.105208
    [12] BENEDETTI I, GULIZZI V. A grain-scale model for high-cycle fatigue degradation in polycrystalline materials[J]. International Journal of Fatigue, 2018, 116: 90-105. doi: 10.1016/j.ijfatigue.2018.06.010
    [13] ROE K L, SIEGMUND T. An irreversible cohesive zone model for interface fatigue crack growth simulation[J]. Engineering fracture mechanics, 2003, 70(2): 209-232. doi: 10.1016/S0013-7944(02)00034-6
    [14] CAMANHO P P, DÁVILA C G. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials[R]. Wachington DC: NASA, 2002.
    [15] URAL A, KRISHNAN V R, PAPOULIA K D. A cohesive zone model for fatigue crack growth allowing for crack retardation[J]. International Journal of Solids and Structures, 2009, 46(11/12): 2453-2462.
    [16] ZHANG Wen-long, TABIEI A. Improvement of an exponential cohesive zone model for fatigue analysis[J]. Journal of Failure Analysis and Prevention, 2018, 18(3): 607-618. doi: 10.1007/s11668-018-0434-4
    [17] 谭菊妮. 基于内聚力模型的钎焊接头疲劳裂纹扩展有限元计算[D]. 青岛: 中国石油大学(华东), 2018.

    TAN Ju-ni. Finite element calculation on the fatigue crack growth of brazed joint using cohesive zone modeling[D]. Qingdao: China University of Petroleum (East China), 2018. (in Chinese)
    [18] CORNEC A, SCHEIDER I, SCHWALBE K H. On the practical application of the cohesive model[J]. Engineering Fracture Mechanics, 2003, 70(14): 1963-1987. doi: 10.1016/S0013-7944(03)00134-6
    [19] LIAO Fang-fang, WANG Wei, CHEN Yi-yi. Parameter calibrations and application of micromechanical fracture models of structural steels[J]. Structural Engineering and Mechanics, 2012, 42(2): 153-174. doi: 10.12989/sem.2012.42.2.153
    [20] SCHEIDER I, BROCKS W. Simulation of cup-cone fracture using the cohesive model[J]. Engineering Fracture Mechanics, 2003, 70(14): 1943-1961. doi: 10.1016/S0013-7944(03)00133-4
    [21] SHET C, CHANDRA N. Analysis of energy balance when using cohesive zone models to simulate fracture processes[J]. Transactions of the ASME, 2002, 124(4): 440-450.
    [22] 刘永明, 张晔江, 陈以一, 等. 焊接热影响区断裂性能试验研究[J]. 力学季刊, 2002, 23(2): 157-163. doi: 10.3969/j.issn.0254-0053.2002.02.003

    LIU Yong-ming, ZHANG Ye-jiang, CHEN Yi-yi, et al. Experimental research on fracture performance in weld heat-affect zone[J]. Chinese Quarterly of Mechanics, 2002, 23(2): 157-163. (in Chinese) doi: 10.3969/j.issn.0254-0053.2002.02.003
    [23] WANG Yuan-qing, ZHOU Hui, SHI Yong-jiu, et al. Study on fracture toughness indices of Chinese structural steel and weld metal[C]//The International Society of Offshore and Polar Engineers. Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference. Beijing: The International Society of Offshore and Polar Engineers, 2010: 129-134.
    [24] DE BORST R. Numerical aspects of cohesive-zone models[J]. Engineering Fracture Mechanics, 2003, 70(14): 1743-1757. doi: 10.1016/S0013-7944(03)00122-X
    [25] HE Chao, LIU Yong-jie, FANG Dong-hui, et al. Very high cycle fatigue behavior of bridge steel welded joint[J]. Theoretical and Applied Mechanics Letters, 2012, 2(3): 031010. doi: 10.1063/2.1203110
    [26] 吉伯海, 徐捷, 姚悦, 等. 考虑荷载影响面的钢桥面板顶板-U肋焊缝疲劳损伤分析[J]. 重庆交通大学学报(自然科学版), 2019, 38(11): 27-33, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201911005.htm

    JI Bo-hai, XU Jie, YAO Yue, et al. Fatigue damage analysis of rib-to-deck weld joints of steel bridge deck considering load influence surface[J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(11): 27-33, 57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201911005.htm
    [27] 周东亮. 考虑短裂纹的焊接结构裂纹行为仿真研究[D]. 武汉: 武汉科技大学, 2019.

    ZHOU Dong-liang. Simulation study on crack behavior of welded structure considering short cracks[D]. Wuhan: Wuhan University of Science and Technology, 2019. (in Chinese)
    [28] WANG Ben-jin, NAGY W, DE BACKER H, et al. Fatigue process of rib-to-deck welded joints of orthotropic steel decks[J]. Theoretical and Applied Fracture Mechanics, 2019, 101: 113-126. doi: 10.1016/j.tafmec.2019.02.015
    [29] TAKAKI S, JIANG Fu-lin, MASUMURA T, et al. Correction of elastic anisotropy in Williamson-hall plots by diffraction Young's modulus and direct fitting method[J]. ISIJ International, 2018, 58(4): 769-775. doi: 10.2355/isijinternational.ISIJINT-2017-642
    [30] 许科华. Q345qD桥梁钢焊接接头组织与疲劳行为的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    XU Ke-hua. Research on welding joint microstructure and fatigue behavior for the Q345qD bridge steel[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
    [31] ZONG Liang, SHI Gang, WANG Yuan-qing. Experimental investigation on fatigue crack behavior of bridge steel Q345qD base metal and butt weld[J]. Materials and Design, 2015, 66: 196-208. doi: 10.1016/j.matdes.2014.10.059
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  99
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-12
  • 网络出版日期:  2024-03-13
  • 刊出日期:  2024-02-25

目录

    /

    返回文章
    返回