Simulation on fatigue crack initiation at U rib-cover plate welded joints of steel bridge decks
-
摘要:
为建立适用于钢桥面板U肋-盖板焊缝疲劳裂纹萌生分析方法,以Roe-Siegmund循环内聚力模型为基础,考虑混合加载模式下的内聚力参数转换,对ABAQUS进行二次开发,形成反映疲劳累计损伤的VUMAT子程序;通过试验数据获得了Q345钢材对应的焊接区域材料内聚力参数,基于Voronoi图法、焊接区域晶粒微观形态与力学特性建立了U肋-盖板焊缝焊趾处微观晶粒组织,并与宏观二维平面应变模型合并,模拟了多尺度疲劳裂纹萌生;结合等效结构应力法和线弹性断裂力学裂纹扩展理论,考虑初始缺陷形态和疲劳断裂临界标准反推了不同应力水平下的累积内聚力长度,进而得到疲劳裂纹萌生寿命的计算方法。分析结果表明:采用提出的方法模拟U肋-盖板焊缝焊趾裂纹萌生行为时,裂纹在焊趾处萌生并垂直于顶板表面进行扩展,形成了穿晶断裂模式,微观晶粒组织应力分布随裂纹萌生及短裂纹扩展而不断变化,且随着微观晶粒组织分布和力学特性的随机性变化,仿真结果中的短裂纹扩展路径细节与临界循环次数均不相同;反推得到的累积内聚力长度随初始缺陷形状比、长裂纹扩展临界深度、微观晶粒组织分布及其力学特性以及所处应力幅值的不同产生变化,考虑上述因素获取的累积内聚力长度-等效结构应力幅拟合曲线能够获取对应的裂纹萌生寿命。由此可知,建立的多尺度疲劳裂纹萌生仿真分析方法可为钢桥面板疲劳裂纹萌生寿命的获取提供新的解决路径。
Abstract:To establish the fatigue crack initiation analysis method for U rib-cover plate welded joints of steel bridge decks, the conversion of cohesive parameters in the mixed loading mode was considered based on the Roe-Siegmund cyclic cohesive zone model, the secondary development of ABAQUS was carried out, and the VUMAT subroutine reflecting the cumulative fatigue damage was formed. The cohesive parameters of the material in the welding zone corresponding to the Q345 steel were obtained from the experimental data. Based on the Voronoi diagram method and the grain microstructure and mechanical characteristics of the welding zone, the microscopic grain structure at the U rib-cover plate weld toe was established. In addition, combined with the macroscopic 2D plane strain model, the multi-scale fatigue crack initiation was simulated. Combined with the equivalent structural stress method and the crack propagation theory of linear elastic fracture mechanics, the accumulated cohesive lengths under different stress levels were backpropagated considering the initial defect morphology and critical criterion of fatigue fracture, and then the calculation method for the crack initiation life was obtained. Analysis results show that when using the proposed method to simulate the crack initiation behavior at the weld toe of U rib-cover plate welded joint, the cracks initiate at the weld toe and propagate perpendicular to the top plate surface, forming a transcrystalline fracture mode. The stress distribution of the microscopic grain structure changes with crack initiation and short crack propagations, and as the microscopic grain structure distribution and mechanical characteristics change randomly, the details of short crack propagation paths and critical cycle numbers in the simulation results are not the same. The backpropagated accumulated cohesive length varies with the initial defect morphology ratio, the critical depth of long crack propagation, the distribution and mechanical characteristics of microscopic grain structure, and the stress amplitude. The fitted curves of accumulated cohesive length and equivalent structural stress amplitude obtained by considering the above factors are capable of obtaining the corresponding crack initiation lifes. Therefore, the established multi-scale fatigue crack initiation simulation analysis method can provide a new solution to obtain the fatigue crack initiation lifes of steel bridge decks.
-
表 1 等效结构应力和全阶段寿命
Table 1. Equivalent structural stresses and full stage lives
荷载/MPa 膜应力/MPa 弯曲应力/MPa 等效结构应力幅值/MPa 全阶段寿命/万次 1.0 -1.11×10-3 68.55 94.09 1 901.70 1.5 -1.04×10-3 102.83 141.14 534.50 2.0 -2.23×10-3 137.11 188.19 217.22 2.5 -2.79×10-3 171.38 235.23 108.04 3.0 -3.34×10-3 205.66 282.28 61.06 3.5 -3.90×10-3 239.94 329.32 37.69 4.0 -4.46×10-3 274.21 376.37 24.81 4.5 -5.01×10-3 308.49 423.41 17.16 5.0 -5.57×10-3 342.76 470.46 12.34 5.5 -6.13×10-3 377.04 517.51 9.16 6.0 -6.68×10-3 411.32 564.55 6.97 表 2 不同荷载作用下的剩余疲劳寿命
Table 2. Residual fatigue lives under different loads
形状比 临界破坏深度/mm 不同荷载(MPa)作用下的剩余疲劳寿命/万次 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 0.2 8.0 319.33 97.80 45.65 25.32 14.54 9.95 6.66 4.56 3.38 2.68 1.96 10.8 457.38 133.43 66.52 33.22 19.04 13.53 9.48 6.42 4.45 3.75 2.81 0.3 8.0 345.46 103.39 47.15 26.43 15.73 10.72 7.05 5.05 3.76 2.87 2.20 10.8 477.93 135.11 65.78 34.96 21.93 14.58 9.99 7.20 4.94 3.84 2.93 0.4 8.0 361.21 113.60 50.26 27.49 16.12 10.63 7.25 5.13 3.73 2.97 2.26 10.8 487.30 157.35 65.28 35.95 22.38 13.54 10.20 6.56 5.15 3.93 3.06 0.5 8.0 362.23 115.26 51.07 28.55 16.47 11.05 7.61 5.20 4.07 3.12 2.42 10.8 502.06 161.06 70.10 37.33 22.02 14.72 10.30 6.96 5.45 4.25 3.39 表 3 1.5 MPa均布荷载作用下的n
Table 3. n under uniformly distributed load of 1.5 MPa
形状比 临界深度/mm 全阶段寿命/万次 剩余疲劳寿命/万次 裂纹萌生寿命/万次 n 0.2 8.0 534.50 97.80 436.70 94 955 10.8 133.43 401.07 87 209 0.3 8.0 103.39 431.11 93 741 10.8 135.11 399.39 86 843 0.4 8.0 113.60 420.90 91 520 10.8 157.35 377.16 82 008 0.5 8.0 115.26 419.25 91 160 10.8 161.06 373.44 81 201 -
[1] 张清华, 卜一之, 李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3): 14-30, 39. doi: 10.3969/j.issn.1001-7372.2017.03.002ZHANG Qing-hua, BU Yi-zhi, LI Qiao. Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 14-30, 39. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.002 [2] 王春生, 翟慕赛, 唐友明, 等. 钢桥面板疲劳裂纹耦合扩展机理的数值断裂力学模拟[J]. 中国公路学报, 2017, 30(3): 82-95. doi: 10.3969/j.issn.1001-7372.2017.03.009WANG Chun-sheng, ZHAI Mu-sai, TANG You-ming, et al. Numerical fracture mechanical simulation of fatigue crack coupled propagation mechanism for steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 82-95. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.009 [3] 张清华, 金正凯, 刘益铭, 等. 钢桥面板纵肋与顶板焊接细节疲劳裂纹扩展三维模拟方法[J]. 中国公路学报, 2018, 31(1): 57-66. doi: 10.3969/j.issn.1001-7372.2018.01.007ZHANG Qing-hua, JIN Zheng-kai, LIU Yi-ming, et al. 3-D Simulation method for fatigue crack propagation in rib-to-deck welded joints of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2018, 31(1): 57-66. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.01.007 [4] 刘益铭, 张清华, 崔闯, 等. 正交异性钢桥面板三维疲劳裂纹扩展数值模拟方法[J]. 中国公路学报, 2016, 29(7): 89-95. doi: 10.3969/j.issn.1001-7372.2016.07.011LIU Yi-ming, ZHANG Qing-hua, CUI Chuang, et al. Numerical simulation method for 3D fatigue crack propagation of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2016, 29(7): 89-95. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.07.011 [5] CUI Chuang, XU You-lin, ZHANG Qing-hua. Multi-scale fatigue damage evolution in orthotropic steel deck of cable-stayed bridges[J]. Engineering Structures, 2021, 237: 112144. doi: 10.1016/j.engstruct.2021.112144 [6] JIANG Fei, DING You-liang, SONG Yong-sheng, et al. Digital twin-driven framework for fatigue life prediction of steel bridges using a probabilistic multiscale model: application to segmental orthotropic steel deck specimen[J]. Engineering Structures, 2021, 241: 112461. doi: 10.1016/j.engstruct.2021.112461 [7] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104. doi: 10.1016/0022-5096(60)90013-2 [8] BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7: 55-129. [9] YANG Q D, SHIM D J, SPEARING S M. A cohesive zone model for low cycle fatigue life prediction of solder joints[J]. Microelectronic Engineering, 2004, 75(1): 85-95. doi: 10.1016/j.mee.2003.11.009 [10] 杨静, 胡志伟, 刘栋, 等. 微观结构下多晶材料的疲劳损伤模型及裂纹的数值模拟方法[J]. 机械科学与技术, 2020, 39(11): 1788-1793. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202011023.htmYANG Jing, HU Zhi-wei, LIU Dong, et al. Model for fatigue damage and numerical simulation method of cracks for polycrystalline material under microstructure[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(11): 1788-1793. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202011023.htm [11] GHODRATI M, AHMADIAN M, MIRZAEIFAR R. Three- dimensional study of rolling contact fatigue using crystal plasticity and cohesive zone method[J]. International Journal of Fatigue, 2019, 128: 105208. doi: 10.1016/j.ijfatigue.2019.105208 [12] BENEDETTI I, GULIZZI V. A grain-scale model for high-cycle fatigue degradation in polycrystalline materials[J]. International Journal of Fatigue, 2018, 116: 90-105. doi: 10.1016/j.ijfatigue.2018.06.010 [13] ROE K L, SIEGMUND T. An irreversible cohesive zone model for interface fatigue crack growth simulation[J]. Engineering fracture mechanics, 2003, 70(2): 209-232. doi: 10.1016/S0013-7944(02)00034-6 [14] CAMANHO P P, DÁVILA C G. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials[R]. Wachington DC: NASA, 2002. [15] URAL A, KRISHNAN V R, PAPOULIA K D. A cohesive zone model for fatigue crack growth allowing for crack retardation[J]. International Journal of Solids and Structures, 2009, 46(11/12): 2453-2462. [16] ZHANG Wen-long, TABIEI A. Improvement of an exponential cohesive zone model for fatigue analysis[J]. Journal of Failure Analysis and Prevention, 2018, 18(3): 607-618. doi: 10.1007/s11668-018-0434-4 [17] 谭菊妮. 基于内聚力模型的钎焊接头疲劳裂纹扩展有限元计算[D]. 青岛: 中国石油大学(华东), 2018.TAN Ju-ni. Finite element calculation on the fatigue crack growth of brazed joint using cohesive zone modeling[D]. Qingdao: China University of Petroleum (East China), 2018. (in Chinese) [18] CORNEC A, SCHEIDER I, SCHWALBE K H. On the practical application of the cohesive model[J]. Engineering Fracture Mechanics, 2003, 70(14): 1963-1987. doi: 10.1016/S0013-7944(03)00134-6 [19] LIAO Fang-fang, WANG Wei, CHEN Yi-yi. Parameter calibrations and application of micromechanical fracture models of structural steels[J]. Structural Engineering and Mechanics, 2012, 42(2): 153-174. doi: 10.12989/sem.2012.42.2.153 [20] SCHEIDER I, BROCKS W. Simulation of cup-cone fracture using the cohesive model[J]. Engineering Fracture Mechanics, 2003, 70(14): 1943-1961. doi: 10.1016/S0013-7944(03)00133-4 [21] SHET C, CHANDRA N. Analysis of energy balance when using cohesive zone models to simulate fracture processes[J]. Transactions of the ASME, 2002, 124(4): 440-450. [22] 刘永明, 张晔江, 陈以一, 等. 焊接热影响区断裂性能试验研究[J]. 力学季刊, 2002, 23(2): 157-163. doi: 10.3969/j.issn.0254-0053.2002.02.003LIU Yong-ming, ZHANG Ye-jiang, CHEN Yi-yi, et al. Experimental research on fracture performance in weld heat-affect zone[J]. Chinese Quarterly of Mechanics, 2002, 23(2): 157-163. (in Chinese) doi: 10.3969/j.issn.0254-0053.2002.02.003 [23] WANG Yuan-qing, ZHOU Hui, SHI Yong-jiu, et al. Study on fracture toughness indices of Chinese structural steel and weld metal[C]//The International Society of Offshore and Polar Engineers. Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference. Beijing: The International Society of Offshore and Polar Engineers, 2010: 129-134. [24] DE BORST R. Numerical aspects of cohesive-zone models[J]. Engineering Fracture Mechanics, 2003, 70(14): 1743-1757. doi: 10.1016/S0013-7944(03)00122-X [25] HE Chao, LIU Yong-jie, FANG Dong-hui, et al. Very high cycle fatigue behavior of bridge steel welded joint[J]. Theoretical and Applied Mechanics Letters, 2012, 2(3): 031010. doi: 10.1063/2.1203110 [26] 吉伯海, 徐捷, 姚悦, 等. 考虑荷载影响面的钢桥面板顶板-U肋焊缝疲劳损伤分析[J]. 重庆交通大学学报(自然科学版), 2019, 38(11): 27-33, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201911005.htmJI Bo-hai, XU Jie, YAO Yue, et al. Fatigue damage analysis of rib-to-deck weld joints of steel bridge deck considering load influence surface[J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(11): 27-33, 57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201911005.htm [27] 周东亮. 考虑短裂纹的焊接结构裂纹行为仿真研究[D]. 武汉: 武汉科技大学, 2019.ZHOU Dong-liang. Simulation study on crack behavior of welded structure considering short cracks[D]. Wuhan: Wuhan University of Science and Technology, 2019. (in Chinese) [28] WANG Ben-jin, NAGY W, DE BACKER H, et al. Fatigue process of rib-to-deck welded joints of orthotropic steel decks[J]. Theoretical and Applied Fracture Mechanics, 2019, 101: 113-126. doi: 10.1016/j.tafmec.2019.02.015 [29] TAKAKI S, JIANG Fu-lin, MASUMURA T, et al. Correction of elastic anisotropy in Williamson-hall plots by diffraction Young's modulus and direct fitting method[J]. ISIJ International, 2018, 58(4): 769-775. doi: 10.2355/isijinternational.ISIJINT-2017-642 [30] 许科华. Q345qD桥梁钢焊接接头组织与疲劳行为的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.XU Ke-hua. Research on welding joint microstructure and fatigue behavior for the Q345qD bridge steel[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese) [31] ZONG Liang, SHI Gang, WANG Yuan-qing. Experimental investigation on fatigue crack behavior of bridge steel Q345qD base metal and butt weld[J]. Materials and Design, 2015, 66: 196-208. doi: 10.1016/j.matdes.2014.10.059