留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CFRP布和SMA/CFRP组合贴片的桥梁横隔板疲劳裂纹修复方法

强旭红 武亚鹏 姜旭 林志平

强旭红, 武亚鹏, 姜旭, 林志平. 基于CFRP布和SMA/CFRP组合贴片的桥梁横隔板疲劳裂纹修复方法[J]. 交通运输工程学报, 2024, 24(1): 171-184. doi: 10.19818/j.cnki.1671-1637.2024.01.011
引用本文: 强旭红, 武亚鹏, 姜旭, 林志平. 基于CFRP布和SMA/CFRP组合贴片的桥梁横隔板疲劳裂纹修复方法[J]. 交通运输工程学报, 2024, 24(1): 171-184. doi: 10.19818/j.cnki.1671-1637.2024.01.011
QIANG Xu-hong, WU Ya-peng, JIANG Xu, LIN Zhi-ping. Repair methods for fatigue cracks in bridge diaphragms based on CFRP sheets and SMA/CFRP composite patches[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 171-184. doi: 10.19818/j.cnki.1671-1637.2024.01.011
Citation: QIANG Xu-hong, WU Ya-peng, JIANG Xu, LIN Zhi-ping. Repair methods for fatigue cracks in bridge diaphragms based on CFRP sheets and SMA/CFRP composite patches[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 171-184. doi: 10.19818/j.cnki.1671-1637.2024.01.011

基于CFRP布和SMA/CFRP组合贴片的桥梁横隔板疲劳裂纹修复方法

doi: 10.19818/j.cnki.1671-1637.2024.01.011
基金项目: 

国家自然科学基金项目 52278206

国家自然科学基金项目 52278207

国家重点研发计划 2020YFD1100403

重庆市自然科学基金项目 CSTB2022NSCQ-MSX1219

中央高校基本科研业务费专项资金项目 22120210577

详细信息
    作者简介:

    强旭红(1984-),女,黑龙江齐齐哈尔人,同济大学副教授,工学博士,从事钢结构加固和抗火研究

    通讯作者:

    姜旭(1982-),男,辽宁沈阳人,同济大学副教授,工学博士

  • 中图分类号: U443.3

Repair methods for fatigue cracks in bridge diaphragms based on CFRP sheets and SMA/CFRP composite patches

Funds: 

National Natural Science Foundation of China 52278206

National Natural Science Foundation of China 52278207

National Key Research and Development Program of China 2020YFD1100403

Natural Science Foundation of Chongqing CSTB2022NSCQ-MSX1219

Fundamental Research Funds for the Central Universities 22120210577

More Information
  • 摘要:

    为了解决长期服役状态下正交异性钢桥面板的横隔板弧形切口处在车致振动和反复轮压荷载作用下的疲劳开裂问题,提出了2种加固方法,即碳纤维增强复合材料(CFRP)布粘贴止裂孔法和通过激活形状记忆合金(SMA)引入预应力的SMA/CFRP组合贴片粘贴止裂孔法;对修复后的横隔板试件进行静力和疲劳加载试验,建立了相应的有限元模型对不同加固方法进行数值模拟和参数分析,对比了不同加固方法的修复效果。研究结果表明:在止裂孔的基础上粘贴CFRP布和SMA/CFRP组合贴片后,横隔板止裂孔边的应力相比单纯止裂孔修复时分别降低了12.46%和44.90%,横隔板的疲劳寿命分别为单纯止裂孔修复横隔板的2.57和5.07倍,2种方法可有效提高开裂区域的局部刚度,改善横隔板开裂局部的应力集中和疲劳受力性能;采用CFRP布粘贴修复时,增加CFRP布层数可以明显降低横隔板上的应力水平和应力集中程度,但为保证CFRP布和钢板间的黏结性能,实际应用中建议粘贴2~3层CFRP布为宜;采用SMA/CFRP组合贴片修复时,钢板上的应力集中程度随SMA丝激活应力的增加近似成线性下降,实际工程中可通过增大SMA丝的激活应力来有效提升修复效果。

     

  • 图  1  横隔板试件的模型选取

    Figure  1.  Model selection of diaphragm specimens

    图  2  横隔板试件尺寸(单位: mm)

    Figure  2.  Size of diaphragm specimens (unit: mm)

    图  3  CFRP布粘贴止裂孔修复试件

    Figure  3.  Specimen repaired by CFRP sheets covering crack-stop holes

    图  4  CFRP布粘贴止裂孔法的修复流程

    Figure  4.  Repair process of CFRP sheets covering crack-stop holes

    图  5  SMA/CFRP组合贴片粘贴止裂孔修复试件

    Figure  5.  Specimens repaired by SMA/CFRP composite patches covering crack-stop holes

    图  6  SMA/CFRP组合贴片修复第1阶段

    Figure  6.  First repair stage of SMA/CFRP composite patches

    图  7  SMA/CFRP组合贴片修复第2阶段

    Figure  7.  Second repair stage of SMA/CFRP composite patches

    图  8  SMA/CFRP组合贴片修复效果

    Figure  8.  Repair effect of SMA/CFRP composite patches

    图  9  横隔板试件

    Figure  9.  Diaphragm specimens

    图  10  横隔板不同修复方案(单位: mm)

    Figure  10.  Different repair schemes for diaphragm (unit: mm)

    图  11  试验加载装置

    Figure  11.  Test loading device

    图  12  应变片布置(单位: mm)

    Figure  12.  Arrangement of strain gauges (unit: mm)

    图  13  荷载作用下横隔板试件应力

    Figure  13.  Stresses of diaphragm specimens under load

    图  14  S-H组试件的破坏模式

    Figure  14.  Failure modes of S-H group specimens

    图  15  S-CH组试件的破坏模式

    Figure  15.  Failure modes of S-CH group specimens

    图  16  S-NCH组试件的破坏模式

    Figure  16.  Failure modes of S-NCH group specimens

    图  17  横隔板有限元模型

    Figure  17.  Finite element model of diaphragm

    图  18  止裂孔周围的应力分布

    Figure  18.  Stress distributions around crack-stop holes

    图  19  数值模拟与试验结果对比

    Figure  19.  Comparison between numerical simulation and test results

    图  20  不同横隔板试件的σ2对比

    Figure  20.  Comparison of σ2 for different diaphragm specimens

    图  21  CFRP布和SMA/CFRP组合贴片参数分析

    Figure  21.  Parameter analysis of CFRP sheets and SMA/CFRP composite patches

    表  1  NiTiNb-SMA的力学性能

    Table  1.   Mechanical properties of NiTiNb-SMA

    弹性模量/GPa 屈服强度/MPa 极限强度/MPa 激活回复应力/MPa
    170 ℃ 306 ℃
    75.18 789.00 1 194.00 293.70 393.00
    下载: 导出CSV

    表  2  试件分组及关键参数

    Table  2.   Specimen groups and their key parameters

    修复方法 试件编号 止裂孔直径/mm CFRP NiTiNb-SMA
    止裂孔 S-H-1 16.0
    S-H-2
    CFRP布粘贴止裂孔 S-CH-1 400 mm×75 mm,2层
    S-CH-2
    SMA/CFRP组合贴片粘贴止裂孔 S-NCH-a 400 mm×75 mm,2层 40根Φ0.8 mm,间距1.6 mm,长度270 mm
    S-NCH-b 400 mm×75 mm,2层 40根Φ0.8 mm,间距1.6 mm,长度400 mm
    下载: 导出CSV

    表  3  横隔板上的预压应力

    Table  3.   Pre-compressive stresses on diaphragms

    试件编号 激活温度/℃ 测点应力/MPa
    σ15 σ30 σ60 σ90
    S-NCH-a 170 17.60 12.58 8.25 2.59
    S-NCH-b 170 20.38 16.02 10.13 2.72
    下载: 导出CSV

    表  4  60 kN荷载下各试件的σ15

    Table  4.   σ15 of each specimen under load of 60 kN MPa

    试件编号 S-H-1 S-H-2 S-CH-1 S-CH-2 S-NCH-a S-NCH-b
    应力 59.89 58.52 51.51 52.15 32.99 32.25
    下载: 导出CSV

    表  5  横隔板试件的疲劳寿命

    Table  5.   Fatigue lives of diaphragm specimens

    试件编号 疲劳开裂寿命/次 破坏模式 寿命提升/倍
    S-H-1 384 094 在止裂孔边缘开裂,开裂后裂纹沿预制裂缝的延伸方向扩展
    S-H-2 388 577
    S-CH-1 994 322 在止裂孔边缘起裂后沿预制裂缝的延伸方向扩展,CFRP布未脱粘 2.57
    S-CH-2 788 040 2.04
    S-NCH-a 799 235 裂纹扩展过程中SMA/CFRP组合贴片与横隔板间发生脱粘 2.07
    S-NCH-b 1 957 814 裂纹扩展过程中SMA/CFRP组合贴片未脱粘 5.07
    下载: 导出CSV

    表  6  粘贴CFRP布时不同CFRP布层数的修复效果

    Table  6.   Repair effect of bonding CFRP sheets with different layers of CFRP sheets

    CFRP布层数 0 1 2 3
    σ2/MPa 174.66 126.84 113.88 106.44
    Kt 6.68 4.85 4.35 4.07
    下载: 导出CSV

    表  7  粘贴SMA/CFRP组合贴片时不同SMA激活应力的修复效果

    Table  7.   Repair effect of bonding SMA/CFRP composite patches under different SMA wire actived stresses

    SMA激活应力/MPa 0 100.0 200.0 293.7 400.0
    σ2/MPa 106.23 94.78 83.33 72.61 60.44
    Kt 4.06 3.62 3.19 2.78 2.31
    下载: 导出CSV
  • [1] 王春生, 冯亚成. 正交异性钢桥面板的疲劳研究综述[J]. 钢结构, 2009, 24(9): 10-13, 32. https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG200909004.htm

    WANG Chun-sheng, FENG Ya-cheng. Review of fatigue research for orthotropic steel bridge decks[J]. Steel Construction, 2009, 24(9): 10-13, 32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG200909004.htm
    [2] TEIXEIRA DE FREITAS S, KOLSTEIN H, BIJLAARD F. Fatigue behavior of bonded and sandwich systems for strengthening orthotropic bridge decks[J]. Composite Structures, 2013, 97: 117-128. doi: 10.1016/j.compstruct.2012.10.019
    [3] 杨仕力, 施洲. 我国大跨径钢箱梁桥正交异性板疲劳损伤研究现状[J]. 桥梁建设, 2017, 47(4): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201704012.htm

    YANG Shi-li, SHI Zhou. Current research of fatigue damage in orthotropic deck plates of long span steel box girder bridges in China[J]. Bridge Construction, 2017, 47(4): 60-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201704012.htm
    [4] LI J, ZHANG Q H, BAO Y, et al. An equivalent structural stress-based fatigue evaluation framework for rib-to-deck welded joints in orthotropic steel deck[J]. Engineering Structures, 2019, 196: 109304. doi: 10.1016/j.engstruct.2019.109304
    [5] MALJAARS J, VAN DOOREN F, KOLSTEIN H. Fatigue assessment for deck plates in orthotropic bridge decks[J]. Steel Construction, 2012, 5(2): 93-100. doi: 10.1002/stco.201210011
    [6] 姚蓓, 张启伟. 钢斜拉桥运营期耐久性与易损性监测[J]. 中外公路, 2016, 36(1): 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201601022.htm

    YAO Bei, ZHANG Qi-wei. Durability and vulnerability monitoring of steel cable-stayed bridges during operation period[J]. Journal of China and Foreign Highway, 2016, 36(1): 90-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201601022.htm
    [7] JIANG Xu, LYU Zhi-lin, QIANG Xu-hong, et al. Fatigue performance of root-to-throat cracks repaired by bonding steel: experimental and numerical investigations[J]. Journal of Constructional Steel Research, 2024, 212: 108296. doi: 10.1016/j.jcsr.2023.108296
    [8] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2): 1-97. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202102002.htm

    Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport, 2021, 34(2): 1-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202102002.htm
    [9] 曾志斌. 正交异性钢桥面板典型疲劳裂纹分类及其原因分析[J]. 钢结构, 2011, 26(2): 9-15, 26. https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG201102005.htm

    ZENG Zhi-bin. Classification and reasons of typical fatigue cracks in orthotropic steel deck[J]. Steel Construction, 2011, 26(2): 9-15, 26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG201102005.htm
    [10] PFEIL M S, BATTISTA R C, MERGULHAO Ã J R, et al. Stress concentration in steel bridge orthotropic decks[J]. Journal of Constructional Steel Research, 2005, 61(8): 1172-1184. doi: 10.1016/j.jcsr.2005.02.006
    [11] 蒋永, 陈惟珍, 钱骥. 正交异性板疲劳分析及构造细节改进设想[J]. 武汉工程大学学报, 2012, 34(7): 19-23, 32. https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG201207005.htm

    JIANG Yong, CHEN Wei-zhen, QIAN Ji. Fatigue analysis of orthotropic steel bridge deck and improvement of ideas of structural details[J]. Journal of Wuhan Institute of Technology, 2012, 34(7): 19-23, 32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG201207005.htm
    [12] 何东升, 肖海珠, 张晓勇. 公路正交异性钢桥面板细节疲劳研究[J]. 公路交通科技, 2016, 33(1): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201601012.htm

    HE Dong-sheng, XIAO Hai-zhu, ZHANG Xiao-yong. Research on detail fatigue of orthotropic steel deck in highway bridge[J]. Journal of Highway and Transportation Research and Development, 2016, 33(1): 76-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201601012.htm
    [13] QIANG X H, WU Y P, WANG Y H, et al. Novel crack repair method of steel bridge diaphragm employing Fe-SMA[J]. Engineering Structures, 2023, 292: 116548. doi: 10.1016/j.engstruct.2023.116548
    [14] LYU Z L, JIANG X, QIANG X H, et al. Proactive strengthening of U-rib butt-welded joints in steel bridge decks using adhesively bonded Fe-SMA strips[J]. Engineering Structures, 2024, 301: 117316. doi: 10.1016/j.engstruct.2023.117316
    [15] JONES S C, CIVJAN S A. Application of fiber reinforced polymer overlays to extend steel fatigue life[J]. Journal of Composites for Construction, 2003, 7(4): 331-338. doi: 10.1061/(ASCE)1090-0268(2003)7:4(331)
    [16] LEPRETRE E, CHATAIGNER S, DIENG L, et al. Fatigue strengthening of cracked steel plates with CFRP laminates in the case of old steel material[J]. Construction and Building Materials, 2018, 174: 421-432. doi: 10.1016/j.conbuildmat.2018.04.063
    [17] 郑云, 叶列平, 岳清瑞. CFRP板加固含裂纹受拉钢板的疲劳性能研究[J]. 工程力学, 2007, 24(6): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200706015.htm

    ZHENG Yun, YE Lie-ping, YUE Qing-rui. Study on fatigue behavior of cracked tensile steel plates reinforced with CFRP plates[J]. Engineering Mechanics, 2007, 24(6): 91-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200706015.htm
    [18] 王海涛. CFRP板加固钢结构疲劳性能及其设计方法研究[D]. 南京: 东南大学, 2016.

    WANG Hai-tao. Study on the fatigue behavior of CFRP plate strengthened steel structures and its design method[D]. Nanjing: Southeast University, 2016. (in Chinese)
    [19] GHAFOORI E, SCHUMACHER A, MOTAVALLI M. Fatigue behavior of notched steel beams reinforced with bonded CFRP plates: determination of prestressing level for crack arrest[J]. Engineering Structures, 2012, 45: 270-283. doi: 10.1016/j.engstruct.2012.06.047
    [20] HOSSEINI A, GHAFOORI E, MOTAVALLI M, et al. Mode Ⅰ fatigue crack arrest in tensile steel members using prestressed CFRP plates[J]. Composite Structures, 2017, 178: 119-134.
    [21] EMDAD R, AL-MAHAIDI R. Effect of prestressed CFRP patches on crack growth of centre-notched steel plates[J]. Composite Structures, 2015, 123: 109-122. doi: 10.1016/j.compstruct.2014.12.007
    [22] DENG J, FEI Z Y, WU Z G, et al. Integrating SMA and CFRP for fatigue strengthening of edge-cracked steel plates[J]. Journal of Constructional Steel Research, 2023, 206: 107931.
    [23] EL-TAHAN M, DAWOOD M, SONG G. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch[J]. Smart Materials and Structures, 2015, 24(6): 065035.
    [24] ZHENG B T, DAWOOD M. Fatigue strengthening of metallic structures with a thermally activated shape memory alloy fiber-reinforced polymer patch[J]. Journal of Composites for Construction, 2017, 21(4): 04016113.
    [25] ZHENG B T, EL-TAHAN M, DAWOOD M. Shape memory alloy-carbon fiber reinforced polymer system for strengthening fatigue-sensitive metallic structures[J]. Engineering Structures, 2018, 171: 190-201.
    [26] ABDY A I, HASHEMI M J, AL-MAHAIDI R. Fatigue life improvement of steel structures using self-prestressing CFRP/SMA hybrid composite patches[J]. Engineering Structures, 2018, 174: 358-372.
    [27] EL-TAHAN M, DAWOOD M. Bond behavior of NiTiNb SMA wires embedded in CFRP composites[J]. Polymer Composites, 2018, 39(10): 3780-3791. http://www.researchgate.net/profile/Mossab_El-Tahan/publication/318198568_Bond_behavior_of_NiTiNb_SMA_wires_embedded_in_CFRP_composites/links/59f1d6edaca272cdc7d00416/Bond-behavior-of-NiTiNb-SMA-wires-embedded-in-CFRP-composites.pdf
    [28] QIANG X H, WU Y P, JIANG X, et al. Fatigue performance of cracked diaphragm cutouts in steel bridge reinforced employing CFRP/SMA[J]. Journal of Constructional Steel Research, 2023, 211: 108136.
    [29] 吕志林, 姜旭, 强旭红, 等. 正交异性钢桥面板横隔板局部模型疲劳试验研究[J]. 结构工程师, 2021, 37(6): 163-171. https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC202106019.htm

    LYU Zhi-lin, JIANG Xu, QIANG Xu-hong, et al. Fatigue experimental study of local diaphragm model in orthotropic steel bridge decks[J]. Structural Engineers, 2021, 37(6): 163-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC202106019.htm
    [30] 吕志林, 姜旭, 强旭红, 等. 基于自应力形状记忆合金加固损伤钢结构的可行性研究[J]. 工业建筑, 2022, 52(6): 174-182. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ202206026.htm

    LYU Zhi-lin, JIANG Xu, QIANG Xu-hong, et al. Feasibility research on strengthening damaged steel structure with self-stress SMA[J]. Industrial Construction, 2022, 52(6): 174-182. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ202206026.htm
  • 加载中
图(21) / 表(7)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  48
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-12
  • 网络出版日期:  2024-03-13
  • 刊出日期:  2024-02-25

目录

    /

    返回文章
    返回