Repair methods for fatigue cracks in bridge diaphragms based on CFRP sheets and SMA/CFRP composite patches
-
摘要:
为了解决长期服役状态下正交异性钢桥面板的横隔板弧形切口处在车致振动和反复轮压荷载作用下的疲劳开裂问题,提出了2种加固方法,即碳纤维增强复合材料(CFRP)布粘贴止裂孔法和通过激活形状记忆合金(SMA)引入预应力的SMA/CFRP组合贴片粘贴止裂孔法;对修复后的横隔板试件进行静力和疲劳加载试验,建立了相应的有限元模型对不同加固方法进行数值模拟和参数分析,对比了不同加固方法的修复效果。研究结果表明:在止裂孔的基础上粘贴CFRP布和SMA/CFRP组合贴片后,横隔板止裂孔边的应力相比单纯止裂孔修复时分别降低了12.46%和44.90%,横隔板的疲劳寿命分别为单纯止裂孔修复横隔板的2.57和5.07倍,2种方法可有效提高开裂区域的局部刚度,改善横隔板开裂局部的应力集中和疲劳受力性能;采用CFRP布粘贴修复时,增加CFRP布层数可以明显降低横隔板上的应力水平和应力集中程度,但为保证CFRP布和钢板间的黏结性能,实际应用中建议粘贴2~3层CFRP布为宜;采用SMA/CFRP组合贴片修复时,钢板上的应力集中程度随SMA丝激活应力的增加近似成线性下降,实际工程中可通过增大SMA丝的激活应力来有效提升修复效果。
Abstract:In order to solve the fatigue cracking problem of the diaphragm arc-shape cutouts in the orthotropic steel bridge decks due to vehicle-induced vibration and cyclical wheel load under prolonged service conditions, two kinds of reinforcement methods, including carbon fiber reinforced polymer (CFRP) sheets covering crack-stop holes method and shape memory alloys (SMA)/CFRP composite patches covering crack-stop holes method which introduced prestress by activating SMA were proposed. The static and fatigue loading tests were carried out on the repaired diaphragm specimens, the corresponding finite element models were established for numerical simulation and parameter analysis of different reinforcement methods, and the repair effects of different reinforcement methods were compared. Research results show that, after bonding CFRP sheets and SMA/CFRP composite patches on the basis of crack-stop holes, the stresses at the hole edges of diaphragms reduce by 12.46% and 44.90%, respectively, and the fatigue lives of diaphragms repaired with CFRP sheets and SMA/CFRP composite patches are 2.57 and 5.07 times that of diaphragms repaired simply with the crack-stop holes, respectively. Both the two methods can effectively improve the local stiffnesses of the cracked region, and alleviate the stress concentration and improve the fatigue performance of the cracked diaphragms. When repairing with CFRP sheets, increasing the number of CFRP sheets layers can significantly reduce the stress and stress concentration on the diaphragm. To guarantee the bonding performance between CFRP sheets and steel plates, however, it is appropriate to apply 2-3 layers of CFRP sheets in practical applications. When repairing with SMA/CFRP composite patches, the stress concentration on steel plates exhibits an approximately linear decreasing trend with the increase of SMA wire actived stress. Consequently, the repair effect can be effectively enhanced by increasing the SMA wire actived stress in practical engineering.
-
表 1 NiTiNb-SMA的力学性能
Table 1. Mechanical properties of NiTiNb-SMA
弹性模量/GPa 屈服强度/MPa 极限强度/MPa 激活回复应力/MPa 170 ℃ 306 ℃ 75.18 789.00 1 194.00 293.70 393.00 表 2 试件分组及关键参数
Table 2. Specimen groups and their key parameters
修复方法 试件编号 止裂孔直径/mm CFRP NiTiNb-SMA 止裂孔 S-H-1 16.0 S-H-2 CFRP布粘贴止裂孔 S-CH-1 400 mm×75 mm,2层 S-CH-2 SMA/CFRP组合贴片粘贴止裂孔 S-NCH-a 400 mm×75 mm,2层 40根Φ0.8 mm,间距1.6 mm,长度270 mm S-NCH-b 400 mm×75 mm,2层 40根Φ0.8 mm,间距1.6 mm,长度400 mm 表 3 横隔板上的预压应力
Table 3. Pre-compressive stresses on diaphragms
试件编号 激活温度/℃ 测点应力/MPa σ15 σ30 σ60 σ90 S-NCH-a 170 17.60 12.58 8.25 2.59 S-NCH-b 170 20.38 16.02 10.13 2.72 表 4 60 kN荷载下各试件的σ15
Table 4. σ15 of each specimen under load of 60 kN
MPa 试件编号 S-H-1 S-H-2 S-CH-1 S-CH-2 S-NCH-a S-NCH-b 应力 59.89 58.52 51.51 52.15 32.99 32.25 表 5 横隔板试件的疲劳寿命
Table 5. Fatigue lives of diaphragm specimens
试件编号 疲劳开裂寿命/次 破坏模式 寿命提升/倍 S-H-1 384 094 在止裂孔边缘开裂,开裂后裂纹沿预制裂缝的延伸方向扩展 S-H-2 388 577 S-CH-1 994 322 在止裂孔边缘起裂后沿预制裂缝的延伸方向扩展,CFRP布未脱粘 2.57 S-CH-2 788 040 2.04 S-NCH-a 799 235 裂纹扩展过程中SMA/CFRP组合贴片与横隔板间发生脱粘 2.07 S-NCH-b 1 957 814 裂纹扩展过程中SMA/CFRP组合贴片未脱粘 5.07 表 6 粘贴CFRP布时不同CFRP布层数的修复效果
Table 6. Repair effect of bonding CFRP sheets with different layers of CFRP sheets
CFRP布层数 0 1 2 3 σ2/MPa 174.66 126.84 113.88 106.44 Kt 6.68 4.85 4.35 4.07 表 7 粘贴SMA/CFRP组合贴片时不同SMA激活应力的修复效果
Table 7. Repair effect of bonding SMA/CFRP composite patches under different SMA wire actived stresses
SMA激活应力/MPa 0 100.0 200.0 293.7 400.0 σ2/MPa 106.23 94.78 83.33 72.61 60.44 Kt 4.06 3.62 3.19 2.78 2.31 -
[1] 王春生, 冯亚成. 正交异性钢桥面板的疲劳研究综述[J]. 钢结构, 2009, 24(9): 10-13, 32. https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG200909004.htmWANG Chun-sheng, FENG Ya-cheng. Review of fatigue research for orthotropic steel bridge decks[J]. Steel Construction, 2009, 24(9): 10-13, 32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG200909004.htm [2] TEIXEIRA DE FREITAS S, KOLSTEIN H, BIJLAARD F. Fatigue behavior of bonded and sandwich systems for strengthening orthotropic bridge decks[J]. Composite Structures, 2013, 97: 117-128. doi: 10.1016/j.compstruct.2012.10.019 [3] 杨仕力, 施洲. 我国大跨径钢箱梁桥正交异性板疲劳损伤研究现状[J]. 桥梁建设, 2017, 47(4): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201704012.htmYANG Shi-li, SHI Zhou. Current research of fatigue damage in orthotropic deck plates of long span steel box girder bridges in China[J]. Bridge Construction, 2017, 47(4): 60-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201704012.htm [4] LI J, ZHANG Q H, BAO Y, et al. An equivalent structural stress-based fatigue evaluation framework for rib-to-deck welded joints in orthotropic steel deck[J]. Engineering Structures, 2019, 196: 109304. doi: 10.1016/j.engstruct.2019.109304 [5] MALJAARS J, VAN DOOREN F, KOLSTEIN H. Fatigue assessment for deck plates in orthotropic bridge decks[J]. Steel Construction, 2012, 5(2): 93-100. doi: 10.1002/stco.201210011 [6] 姚蓓, 张启伟. 钢斜拉桥运营期耐久性与易损性监测[J]. 中外公路, 2016, 36(1): 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201601022.htmYAO Bei, ZHANG Qi-wei. Durability and vulnerability monitoring of steel cable-stayed bridges during operation period[J]. Journal of China and Foreign Highway, 2016, 36(1): 90-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201601022.htm [7] JIANG Xu, LYU Zhi-lin, QIANG Xu-hong, et al. Fatigue performance of root-to-throat cracks repaired by bonding steel: experimental and numerical investigations[J]. Journal of Constructional Steel Research, 2024, 212: 108296. doi: 10.1016/j.jcsr.2023.108296 [8] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2): 1-97. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202102002.htmEditorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport, 2021, 34(2): 1-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202102002.htm [9] 曾志斌. 正交异性钢桥面板典型疲劳裂纹分类及其原因分析[J]. 钢结构, 2011, 26(2): 9-15, 26. https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG201102005.htmZENG Zhi-bin. Classification and reasons of typical fatigue cracks in orthotropic steel deck[J]. Steel Construction, 2011, 26(2): 9-15, 26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG201102005.htm [10] PFEIL M S, BATTISTA R C, MERGULHAO Ã J R, et al. Stress concentration in steel bridge orthotropic decks[J]. Journal of Constructional Steel Research, 2005, 61(8): 1172-1184. doi: 10.1016/j.jcsr.2005.02.006 [11] 蒋永, 陈惟珍, 钱骥. 正交异性板疲劳分析及构造细节改进设想[J]. 武汉工程大学学报, 2012, 34(7): 19-23, 32. https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG201207005.htmJIANG Yong, CHEN Wei-zhen, QIAN Ji. Fatigue analysis of orthotropic steel bridge deck and improvement of ideas of structural details[J]. Journal of Wuhan Institute of Technology, 2012, 34(7): 19-23, 32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG201207005.htm [12] 何东升, 肖海珠, 张晓勇. 公路正交异性钢桥面板细节疲劳研究[J]. 公路交通科技, 2016, 33(1): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201601012.htmHE Dong-sheng, XIAO Hai-zhu, ZHANG Xiao-yong. Research on detail fatigue of orthotropic steel deck in highway bridge[J]. Journal of Highway and Transportation Research and Development, 2016, 33(1): 76-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201601012.htm [13] QIANG X H, WU Y P, WANG Y H, et al. Novel crack repair method of steel bridge diaphragm employing Fe-SMA[J]. Engineering Structures, 2023, 292: 116548. doi: 10.1016/j.engstruct.2023.116548 [14] LYU Z L, JIANG X, QIANG X H, et al. Proactive strengthening of U-rib butt-welded joints in steel bridge decks using adhesively bonded Fe-SMA strips[J]. Engineering Structures, 2024, 301: 117316. doi: 10.1016/j.engstruct.2023.117316 [15] JONES S C, CIVJAN S A. Application of fiber reinforced polymer overlays to extend steel fatigue life[J]. Journal of Composites for Construction, 2003, 7(4): 331-338. doi: 10.1061/(ASCE)1090-0268(2003)7:4(331) [16] LEPRETRE E, CHATAIGNER S, DIENG L, et al. Fatigue strengthening of cracked steel plates with CFRP laminates in the case of old steel material[J]. Construction and Building Materials, 2018, 174: 421-432. doi: 10.1016/j.conbuildmat.2018.04.063 [17] 郑云, 叶列平, 岳清瑞. CFRP板加固含裂纹受拉钢板的疲劳性能研究[J]. 工程力学, 2007, 24(6): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200706015.htmZHENG Yun, YE Lie-ping, YUE Qing-rui. Study on fatigue behavior of cracked tensile steel plates reinforced with CFRP plates[J]. Engineering Mechanics, 2007, 24(6): 91-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200706015.htm [18] 王海涛. CFRP板加固钢结构疲劳性能及其设计方法研究[D]. 南京: 东南大学, 2016.WANG Hai-tao. Study on the fatigue behavior of CFRP plate strengthened steel structures and its design method[D]. Nanjing: Southeast University, 2016. (in Chinese) [19] GHAFOORI E, SCHUMACHER A, MOTAVALLI M. Fatigue behavior of notched steel beams reinforced with bonded CFRP plates: determination of prestressing level for crack arrest[J]. Engineering Structures, 2012, 45: 270-283. doi: 10.1016/j.engstruct.2012.06.047 [20] HOSSEINI A, GHAFOORI E, MOTAVALLI M, et al. Mode Ⅰ fatigue crack arrest in tensile steel members using prestressed CFRP plates[J]. Composite Structures, 2017, 178: 119-134. [21] EMDAD R, AL-MAHAIDI R. Effect of prestressed CFRP patches on crack growth of centre-notched steel plates[J]. Composite Structures, 2015, 123: 109-122. doi: 10.1016/j.compstruct.2014.12.007 [22] DENG J, FEI Z Y, WU Z G, et al. Integrating SMA and CFRP for fatigue strengthening of edge-cracked steel plates[J]. Journal of Constructional Steel Research, 2023, 206: 107931. [23] EL-TAHAN M, DAWOOD M, SONG G. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch[J]. Smart Materials and Structures, 2015, 24(6): 065035. [24] ZHENG B T, DAWOOD M. Fatigue strengthening of metallic structures with a thermally activated shape memory alloy fiber-reinforced polymer patch[J]. Journal of Composites for Construction, 2017, 21(4): 04016113. [25] ZHENG B T, EL-TAHAN M, DAWOOD M. Shape memory alloy-carbon fiber reinforced polymer system for strengthening fatigue-sensitive metallic structures[J]. Engineering Structures, 2018, 171: 190-201. [26] ABDY A I, HASHEMI M J, AL-MAHAIDI R. Fatigue life improvement of steel structures using self-prestressing CFRP/SMA hybrid composite patches[J]. Engineering Structures, 2018, 174: 358-372. [27] EL-TAHAN M, DAWOOD M. Bond behavior of NiTiNb SMA wires embedded in CFRP composites[J]. Polymer Composites, 2018, 39(10): 3780-3791. http://www.researchgate.net/profile/Mossab_El-Tahan/publication/318198568_Bond_behavior_of_NiTiNb_SMA_wires_embedded_in_CFRP_composites/links/59f1d6edaca272cdc7d00416/Bond-behavior-of-NiTiNb-SMA-wires-embedded-in-CFRP-composites.pdf [28] QIANG X H, WU Y P, JIANG X, et al. Fatigue performance of cracked diaphragm cutouts in steel bridge reinforced employing CFRP/SMA[J]. Journal of Constructional Steel Research, 2023, 211: 108136. [29] 吕志林, 姜旭, 强旭红, 等. 正交异性钢桥面板横隔板局部模型疲劳试验研究[J]. 结构工程师, 2021, 37(6): 163-171. https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC202106019.htmLYU Zhi-lin, JIANG Xu, QIANG Xu-hong, et al. Fatigue experimental study of local diaphragm model in orthotropic steel bridge decks[J]. Structural Engineers, 2021, 37(6): 163-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC202106019.htm [30] 吕志林, 姜旭, 强旭红, 等. 基于自应力形状记忆合金加固损伤钢结构的可行性研究[J]. 工业建筑, 2022, 52(6): 174-182. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ202206026.htmLYU Zhi-lin, JIANG Xu, QIANG Xu-hong, et al. Feasibility research on strengthening damaged steel structure with self-stress SMA[J]. Industrial Construction, 2022, 52(6): 174-182. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ202206026.htm