Regional difference in temperature gradient of concrete single-box multi-cell box girder
-
摘要:
为确定不同地区混凝土单箱多室箱梁日照温差代表值,在西藏山南、陕西铜川与广西来宾分别建立了室外日照温度场试验模型,同时安装了大量温度传感器与气象采集器,通过现场实测数据总结了山南、铜川和来宾气象差异性;通过长期箱梁测试温度与逐时气象数据的逐步回归,提出了山南、铜川和来宾箱梁温差计算公式;调研了西藏6个地级市、陕西10个地级市和广西14个地级市1955—2016年的气象数据,并将气象日值数据分解为逐时气象数据用于温差计算,基于超阈值分布模型得到了3个地区重现期为50年的温度作用代表值,并绘制了温度作用分布地图。研究结果表明:箱梁模型实测的向阳侧边腹板竖向温差、中腹板竖向温差、顶板横向温差与底板横向温差从高到低依次为山南、铜川和来宾,说明受地理位置影响,中国不同地区的箱梁竖向温差和横向温差具有差异性;混凝土箱梁顶板向阳侧横向温差均高于底板,山南、铜川和来宾箱梁顶板向阳侧横向温差比底板分别高30.7%、23.2%和11.1%;西藏、陕西和广西的中腹板竖向温差地域差异性最大可达10.5 ℃,顶板横向温差地域差异性最大可达20.3 ℃,说明混凝土桥梁的日照作用具有明显的地域差异性。
Abstract:In order to determine the representative values of sunshine temperature differences of concrete single-box multi-cell box girders in different regions, outdoor sunshine temperature field test models were established in Shannan of Xizang, Tongchuan of Shaanxi and Laibin of Guangxi, respectively, and a large number of temperature sensors and meteorological collectors were installed at the same time. The meteorological variability in Shannan, Tongchuan and Laibin was summarized through the on-site measured data, and the formulae for calculating the temperature difference among box girders in Shannan, Tongchuan and Laibin were proposed through the step-by-step regression of the long-term box girder test temperature and the hour-by-hour meteorological data. The meteorological data from 1955 to 2016 in 6 prefecture-level cities in Xizang, 10 prefecture-level cities in Shaanxi, and 14 prefecture-level cities in Guangxi were surveyed, and the daily meteorological data were decomposed into hour-by-hour meteorological data for the calculation of the temperature difference. Based on the suprathreshold distribution model, the representative values of the temperature action in three provinces with a reproduction period of 50 years were obtained, and the temperature action distribution maps were drawn. Research results show that the measured vertical temperature difference of sunny side web, vertical temperature difference of middle web, lateral temperature difference of top plate and lateral temperature difference of bottom plate of the box girder model are in descending order from Shannan, Tongchuan to Laibin, which shows that both the vertical and lateral temperature differences of box girders in different regions of China are differentiated by the influence of geographic location. The lateral temperature difference of the top plate of the concrete box girder in the sunny side is higher than that of the bottom plate, specifically by 30.7%, 23.2% and 11.1% in Shannan, Tongchuan and Laibin, respectively. The vertical temperature difference of the middle web can reach up to 10.5 ℃ and the lateral temperature difference of the top plate can reach up to 20.3 ℃ in Xizang, Shaanxi and Guangxi, showing that the sunshine effect on concrete bridge varies significantly by region.
-
表 1 实际桥梁和缩尺模型实测温差对比
Table 1. Comparison of measured temperature differences between actual bridge and scaled-down model
℃ 截面温差 陕西 广西 铜川模型 王家河特大桥 偏差 来宾模型 培森柳江特大桥 偏差 Tsw1 10.9 11.6 -0.7 9.4 9.2 0.2 Tmw1 12.2 12.0 0.2 8.8 8.3 0.5 Tt1 18.5 18.1 0.4 10.8 11.5 -1.3 Tb1 14.2 12.7 1.5 9.6 8.8 0.8 表 2 不同地区温差计算公式待定系数
Table 2. Undetermined coefficients of temperature difference calculating formulas of different regions
截面温差 地区 待定系数 p1 p2 p3 p4 p5 Tsw1 山南 -3.295 8 0.152 6 0.008 7 0.396 9 -0.039 9 铜川 -3.712 6 0.155 6 0.006 5 1.590 3 -0.083 4 来宾 -2.594 0 0.100 2 0.008 1 0.007 2 -0.585 4 Tmw1 山南 -2.196 0 0.136 9 0.009 3 0.158 7 -0.006 2 铜川 -3.354 1 0.103 0 0.005 2 1.155 9 0.163 2 来宾 -3.317 0 0.137 7 0.006 7 -1.070 8 0.072 3 Tt1 山南 2.748 8 0.029 0 0.019 8 -0.124 3 -0.035 0 铜川 -1.983 9 0.006 2 0.008 4 0.944 9 0.288 8 来宾 -0.929 5 0.045 1 0.003 5 -1.139 8 0.261 9 Tb1 山南 -1.632 9 0.096 0 0.008 5 0.089 0 0.027 5 铜川 -3.128 5 0.024 3 0.006 7 2.131 2 0.013 7 来宾 -1.022 9 0.078 7 0.008 3 -0.206 6 -0.004 1 表 3 箱梁温差GP分布模型参数估计值和50年一遇温差代表值
Table 3. Estimated parameters of box girder temperature difference GP distribution model and representative values of 1-in-50-year temperature difference
截面温差 地区 GP分布模型参数估计值 50年一遇温差代表值/℃ k σ u Tsw1 拉萨 -0.142 1 0.371 0 11.446 13.07 西安 -0.153 4 0.671 4 10.077 12.92 南宁 -0.323 4 0.628 6 10.198 11.93 Tmw1 拉萨 -0.157 6 0.372 5 12.596 14.15 西安 -0.103 9 1.064 8 8.605 13.81 南宁 -0.269 8 0.645 7 10.107 12.12 Tt1 拉萨 -0.199 6 0.503 1 25.008 26.88 西安 -0.244 9 1.404 6 11.836 16.49 南宁 -0.097 9 0.374 0 7.698 9.56 Tb1 拉萨 -0.131 2 0.398 5 14.979 16.77 西安 -0.101 2 1.056 3 11.374 16.58 南宁 -0.302 4 0.446 7 10.349 11.64 -
[1] 刘永健, 刘江, 张宁. 桥梁结构日照温度作用研究综述[J]. 土木工程学报, 2019, 52(5): 59-78. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201905006.htmLIU Yong-jian, LIU Jiang, ZHANG Ning. Review on solar thermal actions of bridge structures[J]. China Civil Engineering Journal, 2019, 52(5): 59-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201905006.htm [2] 顾颖, 李亚东, 姚昌荣. 太阳辐射下混凝土箱梁温度场研究[J]. 公路交通科技, 2016, 33(2): 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201602009.htmGU Ying, LI Ya-dong, YAO Chang-rong. Research on temperature field of concrete box girder under solar radiation[J]. Journal of Highway and Transportation Research and Development, 2016, 33(2): 46-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201602009.htm [3] SONG X M, MELHEM H, LI J, et al. Effects of solar temperature gradient on long-span concrete box girder during cantilever construction[J]. Journal of Bridge Engineering, 2016, 21(3): 04015061. doi: 10.1061/(ASCE)BE.1943-5592.0000844 [4] 赵人达, 王永宝. 日照作用下混凝土箱梁温度场边界条件研究[J]. 中国公路学报, 2016, 29(7): 52-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201607009.htmZHAO Ren-da, WANG Yong-bao. Research on the boundary conditions of temperature field of concrete box girder under sunshine[J]. China Journal of Highway and Transport, 2016, 29(7): 52-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201607009.htm [5] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2): 1-97. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202102002.htmEditorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport, 2021, 34(2): 1-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202102002.htm [6] PENG G, NAKAMURA S, ZHU X Q, et al. An experimental and numerical study on temperature gradient and thermal stress of CFST truss girders under solar radiation[J]. Computers and Concrete, 2017, 20(5): 605-616. [7] SONG Y S, DING Y L. Fatigue monitoring and analysis of orthotropic steel deck considering traffic volume and ambient temperature[J]. Science China Technological Sciences, 2013, 56(7): 1758-1766. doi: 10.1007/s11431-013-5235-0 [8] POTGIETER I C, GAMBLE W L. Response of highway bridges to nonlinear temperature distributions[R]. Urbana-Champaign: University of Illinois at Urbana-Champaign, 1983. [9] POTGIETER I C, GAMBLE W L. Nonlinear temperature distributions in bridges at different locations in the United States[J]. PCI Journal, 1989, 34(4): 80-103. doi: 10.15554/pcij.07011989.80.103 [10] ROBERTS-WOLLMAN C L, BREEN J E, CAWRSE J. Measurements of thermal gradients and their effects on segmental concrete bridge[J]. Journal of Bridge Engineering, 2002, 7(3): 166-174. doi: 10.1061/(ASCE)1084-0702(2002)7:3(166) [11] LEE J H, KALKAN I. Analysis of thermal environmental effects on precast, prestressed concrete bridge girders: temperature differentials and thermal deformations[J]. Advances in Structural Engineering, 2012, 15(3): 447-459. doi: 10.1260/1369-4332.15.3.447 [12] ABID S R, TAYI N, ÖZAKÇA M. Experimental analysis of temperature gradients in concrete box-girders[J]. Construction and Building Materials, 2016, 106: 523-532. doi: 10.1016/j.conbuildmat.2015.12.144 [13] 潘旦光, 郭馨远, 丁民涛, 等. 单箱三室混凝土箱梁温度分布研究[J]. 河海大学学报(自然科学版), 2018, 46(6): 513-520. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201806008.htmPAN Dan-guang, GUO Xin-yuan, DING Min-tao, et al. Study on the temperature distribution of a single box three-room concrete girder[J]. Journal of Hohai University (Natural Sciences), 2018, 46(6): 513-520. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201806008.htm [14] ZHANG F, LIU J Y, GAO L. Experimental investigation of temperature gradients in a three-cell concrete box-girder[J]. Construction and Building Materials, 2022, 335: 127413. doi: 10.1016/j.conbuildmat.2022.127413 [15] 王永宝, 赵人达. 混凝土箱梁温度梯度取值研究[J]. 世界桥梁, 2016, 44(5): 43-47, 61. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201605009.htmWANG Yong-bao, ZHAO Ren-da. Study of temperature gradient values for concrete box girder[J]. World Bridges, 2016, 44(5): 43-47, 61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201605009.htm [16] 刘江, 刘永健, 白永新, 等. 混凝土箱梁温度梯度模式的地域差异性及分区研究[J]. 中国公路学报, 2020, 33(3): 73-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202003007.htmLIU Jiang, LIU Yong-jian, BAI Yong-xin, et al. Regional variation and zoning of temperature gradient pattern of concrete box girder[J]. China Journal of Highway and Transport, 2020, 33(3): 73-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202003007.htm [17] SHENG X W, ZHOU T M, HUANG S J, et al. Prediction of vertical temperature gradient on concrete box-girder considering different locations in China[J]. Case Studies in Construction Materials, 2022, 16: e01026. doi: 10.1016/j.cscm.2022.e01026 [18] CAI C Z, HUANG S J, HE X H, et al. Investigation of concrete box girder positive temperature gradient patterns considering different climatic regions[J]. Structures, 2022, 35: 591-607. doi: 10.1016/j.istruc.2021.11.030 [19] 刘永健, 马志元, 刘江, 等. 陕西地区混凝土无伸缩缝桥梁的温度作用及其区划[J]. 交通运输工程学报, 2022, 22(5): 85-103. doi: 10.19818/j.cnki.1671-1637.2022.05.004LIU Yong-jian, MA Zhi-yuan, LIU Jiang, et al. Temperature action and zoning of concrete jointless bridge in Shaanxi[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 85-103. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.05.004 [20] 盛兴旺, 郑严煌, 郑纬奇, 等. 基于实时阴影技术的混凝土箱梁竖向温度梯度模式[J]. 华南理工大学学报(自然科学版), 2020, 48(10): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202010005.htmSHENG Xing-wang, ZHENG Yan-huang, ZHENG Wei-qi, et al. Vertical temperature gradient model of concrete box girders based on real time shadow technology[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(10): 40-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202010005.htm [21] ABID S R, XUE J Q, LIU J, et al. Temperatures and gradients in concrete bridges: experimental, finite element analysis and design[J]. Structures, 2022, 37: 960-976. doi: 10.1016/j.istruc.2022.01.070 [22] 顾斌, 高望, 谢甫哲, 等. 基于历史气象参数的桥梁结构日照温度作用代表值研究[J]. 公路交通科技, 2019, 36(12): 79-86, 93. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201912010.htmGU Bin, GAO Wang, XIE Fu-zhe, et al. Study on representative values of solar temperature action on bridge structure based on historical meteorological parameters[J]. Journal of Highway and Transportation Research and Development, 2019, 36(12): 79-86, 93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201912010.htm [23] ZHAO Lei, ZHOU Ling-yu, ZHANG Guang-chao, et al. Experimental study of the temperature distribution in CRTS-Ⅱ ballastless tracks on a high-speed railway bridge[J]. Applied Sciences, 2020, 10(6): 1980. doi: 10.3390/app10061980 [24] ZHOU Guang-dong, YI Ting-hua, CHEN Bin, et al. A generalized pareto distribution-based extreme value model of thermal gradients in a long-span bridge combining parameter updating[J]. Advances in Structural Engineering, 2016, 20(2): 202-213. [25] ROEDER C W. Proposed design method for thermal bridge movements[J]. Journal of Bridge Engineering, 2003, 8(1): 12-19. doi: 10.1061/(ASCE)1084-0702(2003)8:1(12) [26] LEE J H. Investigation of extreme environmental conditions and design thermal gradients during construction for prestressed concrete bridge girders[J]. Journal of Bridge Engineering, 2012, 17(3): 547-556. doi: 10.1061/(ASCE)BE.1943-5592.0000277 [27] 刘江, 刘永健, 马志元, 等. 钢-混凝土组合梁桥的温度梯度作用(Ⅱ)——地域差异与等值线地图[J]. 中国公路学报, 2023, 36(1): 135-149. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202301012.htmLIU Jiang, LIU Yong-jian, MA Zhi-yuan, et al. Temperature gradient action of steel-concrete composite girder bridge (Ⅱ)—regional difference and isoline map[J]. China Journal of Highway and Transport, 2023, 36(1): 135-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202301012.htm [28] 刘江, 刘永健, 房建宏, 等. 高原高寒地区"上"形钢-混凝土组合梁的竖向温度梯度模式[J]. 交通运输工程学报, 2017, 17(4): 32-44. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201704004.htmLIU Jiang, LIU Yong-jian, FANG Jian-hong, et al. Vertical temperature gradient patterns of 上-shaped steel-concrete composite girder in arctic alpine plateau region[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 32-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201704004.htm [29] 刘诚. 钢-混凝土组合桥梁的温度场和温度效应研究[D]. 北京: 清华大学, 2018.LIU Cheng. The temperature field and thermal effect of steel- concrete composite bridges[D]. Beijing: Tsinghua University, 2018. (in Chinese) [30] FAN J S, LIU Y F, LIU C. Experiment study and refined modeling of temperature field of steel-concrete composite beam bridges[J]. Engineering Structures, 2021, 240(6): 112350.