留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

腐蚀-疲劳荷载耦合作用下桥梁拉索高强钢丝自漏磁信号变化规律

孟庆领 杨家炳 潘鹏超 杨新磊 王宝林 宋金博

孟庆领, 杨家炳, 潘鹏超, 杨新磊, 王宝林, 宋金博. 腐蚀-疲劳荷载耦合作用下桥梁拉索高强钢丝自漏磁信号变化规律[J]. 交通运输工程学报, 2024, 24(1): 202-217. doi: 10.19818/j.cnki.1671-1637.2024.01.013
引用本文: 孟庆领, 杨家炳, 潘鹏超, 杨新磊, 王宝林, 宋金博. 腐蚀-疲劳荷载耦合作用下桥梁拉索高强钢丝自漏磁信号变化规律[J]. 交通运输工程学报, 2024, 24(1): 202-217. doi: 10.19818/j.cnki.1671-1637.2024.01.013
MENG Qing-ling, YANG Jia-bing, PAN Peng-chao, YANG Xin-lei, WANG Bao-lin, SONG Jin-bo. Variation laws of self-magnetic flux leakage signals of high-strength steel wires in bridge cables under coupling effect of corrosion-fatigue loads[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 202-217. doi: 10.19818/j.cnki.1671-1637.2024.01.013
Citation: MENG Qing-ling, YANG Jia-bing, PAN Peng-chao, YANG Xin-lei, WANG Bao-lin, SONG Jin-bo. Variation laws of self-magnetic flux leakage signals of high-strength steel wires in bridge cables under coupling effect of corrosion-fatigue loads[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 202-217. doi: 10.19818/j.cnki.1671-1637.2024.01.013

腐蚀-疲劳荷载耦合作用下桥梁拉索高强钢丝自漏磁信号变化规律

doi: 10.19818/j.cnki.1671-1637.2024.01.013
基金项目: 

国家自然科学基金项目 52108163

江西省交通运输厅科技计划项目 2021H00006

江西省03专项及5G项目 20212ABC03A19

详细信息
    作者简介:

    孟庆领(1987-),男,河北廊坊人,天津城建大学副教授,工学博士,从事桥梁长期性能与耐久性研究

    通讯作者:

    王宝林(1984-),男,河南新乡人,天津市交通科学研究院高级工程师

  • 中图分类号: U443.38

Variation laws of self-magnetic flux leakage signals of high-strength steel wires in bridge cables under coupling effect of corrosion-fatigue loads

Funds: 

National Natural Science Foundation of China 52108163

Science and Technology Program of Department of Transportation of Jiangxi Province 2021H00006

03 Special and 5G Project of Jiangxi Province 20212ABC03A19

More Information
  • 摘要:

    为增强桥梁拉索高强钢丝漏磁检测的实用性,开展了腐蚀、应力单一因素作用试验与预腐蚀-疲劳-腐蚀、预疲劳-腐蚀-疲劳三阶段交互作用试验,阐述了腐蚀-疲劳耦合作用对自漏磁信号的影响机制。研究结果表明:腐蚀区域的自漏磁信号极值随腐蚀时间的增加而增加,且变化特征越发明显,腐蚀缺陷引起的异常自漏磁信号最大变化可达50 000 nT;随着疲劳加载循环次数的增加,无锈蚀高强钢丝自漏磁信号整体呈现先增加后稳定的趋势,当疲劳加载循环次数大于10 000时,磁场强度的增加速率降低且趋于平缓;预腐蚀后施加的交变应力场会削弱腐蚀缺陷引起的自漏磁信号,再次腐蚀后的磁场信号变化与预腐蚀程度有关,预腐蚀9 h后施加疲劳荷载,之后再腐蚀3 h,与单一腐蚀12 h相比,自漏磁信号强度削弱了32%;施加预疲劳交变应力场可强化磁场,导致腐蚀后自漏磁信号极值增加,当预疲劳加载循环次数从1 000增加至100 000时,自漏磁信号强度增大了30%。由此可见,早期腐蚀引起的高强钢丝异常自漏磁信号可被疲劳作用掩盖,考虑单一腐蚀与应力变化难以反映高强钢丝自漏磁检测效果,需综合考虑腐蚀-疲劳的耦合效应,以获得桥梁拉索高强钢丝自漏磁信号变化规律,从而为桥梁拉索无损检测提供分析依据。

     

  • 图  1  电化学腐蚀试验

    Figure  1.  Electrochemical corrosion test

    图  2  试验流程

    Figure  2.  Test flow

    图  3  磁场强度分布

    Figure  3.  Distributions of magnetic field intensities

    图  4  试件局部腐蚀区域的磁偶极子理论模型

    Figure  4.  Magnetic dipole theoretical model for local corrosion area of specimen

    图  5  x=150 mm时磁场强度随提离距离的变化曲线

    Figure  5.  Variation curve of magnetic field intensity with lifting distance at x=150 mm

    图  6  腐蚀钢丝SMFL信号分布

    Figure  6.  istributions of SMFL signals in corroded steel wires

    图  7  磁场强度随腐蚀时间的变化曲线

    Figure  7.  Variation curves of magnetic field intensities with corrosion time

    图  8  不同拉应力下高强钢丝SMFL信号分布

    Figure  8.  Distributions of SMFL signals of high-strength steel wires under different tensile stresses

    图  9  加-卸载后SMFL信号

    Figure  9.  SMFL signals after loading and unloading

    图  10  卸载后磁场强度随加载应力幅变化曲线

    Figure  10.  Variation curves of magnetic field intensity after unloading with loading stress amplitude

    图  11  弱磁场下磁场强度随应力的变化曲线

    Figure  11.  Variation curve of magnetic field intensity with stress under weak magnetic field

    图  12  疲劳荷载作用下SMFL信号分布与变化规律

    Figure  12.  Distributions and variation laws of SMFL signals under fatigue load

    图  13  预腐蚀-疲劳-腐蚀三阶段交互作用试验中高强钢丝SMFL信号分布

    Figure  13.  Distributions of SMFL signals of high-strength steel wires in three-stage interaction tests of pre-corrosion-fatigue-corrosion

    图  14  不同工况下高强钢丝SMFL信号分布

    Figure  14.  Distributions of SMFL signals of high-strength steel wires under different working conditions

    图  15  预疲劳-腐蚀-疲劳三阶段交互作用下高强钢丝SMFL信号分布

    Figure  15.  Distributions of SMFL signals of high-strength steel wires in three-stage interaction tests of pre-fatigue-corrosion-fatigue

    图  16  不同预疲劳加载循环次数下高强钢丝磁场强度变化曲线

    Figure  16.  Variation curves of magnetic field intensities of high-strength steel wires under different pre-fatigue loading cycle numbers

    表  1  镀锌钢丝微量元素占比

    Table  1.   Proportions of micro-elements in galvanized steel wire %

    元素 C Mn Si Cr Cu
    占比 0.90~0.95 0.30~0.90 0.12~1.20 ≤0.35 ≤0.20
    下载: 导出CSV

    表  2  镀锌钢丝宏观性能

    Table  2.   Macroscopic properties of galvanized steel wire

    参数 断后伸长率/% 密度/(g·cm-3) 强度/MPa 弹性模量/MPa
    取值 ≥4.0 7.85 1 860 2.0×105
    下载: 导出CSV

    表  3  试验工况

    Table  3.   Test conditions

    工况 编号 腐蚀宽度/mm 腐蚀时间/h 加载应力幅/MPa 疲劳加载次数
    腐蚀 C-1 1 1、2、3、4 0 0
    C-2 3 3、6、9、12 0 0
    C-3 5 5、10、15、20 0 0
    静拉应力 Y-1 0 0 0、260、520、780、1 040、1 300 0
    疲劳 F-1 0 0 0、260、520、780,1 040、1 300 10、100、1 000、10 000、100 000
    预腐蚀-疲劳-腐蚀 C-F-C-1 3 预腐蚀3 h,再腐蚀6 h 260 10、100、1 000、10 000、100 000
    C-F-C-2 3 预腐蚀6 h,再腐蚀9 h 260 10、100、1 000、10 000
    C-F-C-3 3 预腐蚀9 h,再腐蚀12 h 260 10、100、1 000
    预疲劳-腐蚀-疲劳 F-C-F-1 3 3 260 预疲劳加载1 000次,再疲劳加载10、100、1 000、10 000、100 000次
    F-C-F-2 3 6 260 预疲劳加载1 000次,再疲劳加载10、100、1 000、10 000次
    F-C-F-3 3 9 260 预疲劳加载1 000次,再疲劳加载10、100、1 000次
    F-C-F-4 3 3 260 预疲劳加载10 000次,再疲劳加载10、100、1 000、10 000、100 000次
    F-C-F-5 3 6 260 预疲劳加载10 000次,再疲劳加载10、100、1 000、10 000次
    F-C-F-6 3 9 260 预疲劳加载10 000次,再疲劳加载10、100、1 000次
    F-C-F-7 3 3 260 预疲劳加载100 000次,再疲劳加载10、100、1 000、10 000、100 000次
    F-C-F-8 3 6 260 预疲劳加载100 000次,再疲劳加载10、100、1 000、10 000次
    F-C-F-9 3 9 260 预疲劳加载100 000次,再疲劳加载10、100、1 000次
    下载: 导出CSV
  • [1] MAYRBAURL R M, CAMO S. Cracking and fracture of suspension bridge wire[J]. Journal of Bridge Engineering, 2001, 6(6): 645-650. doi: 10.1061/(ASCE)1084-0702(2001)6:6(645)
    [2] 缪长青, 尉廷华, 王义春, 等. 大跨桥梁缆索钢丝腐蚀速率的试验研究[J]. 西南交通大学学报, 2014, 49(3): 513-518. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201403022.htm

    MIAO Chang-qing, WEI Ting-hua, WANG Yi-chun, et al. Corrosion rate test of cable wires of large span bridge[J]. Journal of Southwest Jiaotong University, 2014, 49(3): 513-518. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201403022.htm
    [3] RAE P J, DICKSON P M. A review of the mechanism by which exploding bridge-wire detonators function[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475(2227): 20190120. doi: 10.1098/rspa.2019.0120
    [4] 杨世聪, 张劲泉, 姚国文. 在役桥梁拉吊索腐蚀-疲劳损伤与破断机理分析[J]. 公路交通科技, 2019, 36(3): 80-86. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201903012.htm

    YANG Shi-cong, ZHANG Jin-quan, YAO Guo-wen. Analysis on corrosion-fatigue damage and fracture mechanism of cables/hangers in service bridges[J]. Journal of Highway and Transportation Research and Development, 2019, 36(3): 80-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201903012.htm
    [5] 许福友, 陈艾荣, 张建仁. 缆索承重桥梁的颤振可靠性[J]. 中国公路学报, 2006, 19(5): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200605011.htm

    XU Fu-you, CHEN Ai-rong, ZHANG Jian-ren. Flutter reliability of cable supported bridge[J]. China Journal of Highway and Transport, 2006, 19(5): 59-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200605011.htm
    [6] 孙晓燕, 徐冲, 王海龙, 等. 用于疲劳可靠性分析的公路桥梁荷载效应研究[J]. 公路交通科技, 2011, 28(5): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201105016.htm

    SUN Xiao-yan, XU Chong, WANG Hai-long, et al. Investigation of highway bridge load effect for fatigue reliability analysis[J]. Journal of Highway and Transportation Research and Development, 2011, 28(5): 80-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201105016.htm
    [7] MAHMOUD K M. Fracture strength for a high strength steel bridge cable wire with a surface crack[J]. Theoretical and Applied Fracture Mechanics, 2007, 48(2): 152-160. doi: 10.1016/j.tafmec.2007.05.006
    [8] DENG Yang, LIU Yang, CHEN Su-ren. Long-term in-service monitoring and performance assessment of the main cables of long-span suspension bridges[J]. Sensors, 2017, 17(6): 1414. doi: 10.3390/s17061414
    [9] LIU Zhong-xiang, GUO Tong, HUANG Ling-yu, et al. Fatigue life evaluation on short suspenders of long-span suspension bridge with central clamps[J]. Journal of Bridge Engineering, 2017, 22(10): 04017074. doi: 10.1061/(ASCE)BE.1943-5592.0001097
    [10] LIU Zhong-xiang, GUO Tong, HEBDON M H, et al. Corrosion fatigue analysis and reliability assessment of short suspenders in suspension and arch bridges[J]. Journal of Performance of Constructed Facilities, 2018, 32(5): 04018060. doi: 10.1061/(ASCE)CF.1943-5509.0001203
    [11] 唐力伟, 张晓涛, 王平. 管状金属构件裂纹电磁声发射激发特性试验研究[J]. 振动与冲击, 2014, 33(19): 48-51, 58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201419010.htm

    TANG Li-wei, ZHANG Xiao-tao, WANG Ping. Tests for exciting features of electromagnetic acoustic emission of tubular metal parts'crack[J]. Journal of Vibration and Shock, 2014, 33(19): 48-51, 58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201419010.htm
    [12] 张闯, 刘素贞, 杨庆新, 等. 基于电磁声发射的金属板裂纹检测实验研究[J]. 电工电能新技术, 2011, 30(1): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DGDN201101019.htm

    ZHANG Chuang, LIU Su-zhen, YANG Qing-xin, et al. Experiment of crack detection of metal plate based on electromagnetically induced acoustic emission[J]. Advanced Technology of Electrical Engineering and Energy, 2011, 30(1): 84-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGDN201101019.htm
    [13] 高伟. 基于磁致伸缩导波长钢管及钢带非接触缺陷检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    GAO Wei. Research on noncontact defect detection technology of magnetostrictive guided wave for long steel pipe and steel strip[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese)
    [14] RAMANDI H L, CHEN Hong-hao, CROSKY A, et al. Interactions of stress corrosion cracks in cold drawn pearlitic steel wires: an X-ray micro-computed tomography study[J]. Corrosion Science, 2018, 145: 170-179. doi: 10.1016/j.corsci.2018.09.009
    [15] 汪友生, 徐小平, 沈兰荪. 铁磁材料的漏磁检测[J]. 电子测量与仪器学报, 2000, 14(3): 45-48, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY200003010.htm

    WANG You-sheng, XU Xiao-ping, SHEN Lan-sun. Testing of MFL for ferromagnetic materials[J]. Journal of Electronic Measurement and Instrument, 2000, 14(3): 45-48, 59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY200003010.htm
    [16] KARTHIK M M, TERZIOGLU T, HURLEBAUS S, et al. Magnetic flux leakage technique to detect loss in metallic area in external post-tensioning systems[J]. Engineering Structures, 2019, 201: 109-765.
    [17] 苏三庆, 刘馨为, 王威, 等. 金属磁记忆检测技术研究新进展与关键问题[J]. 工程科学学报, 2020, 42(12): 1557-1572. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202012003.htm

    SU San-qing, LIU Xin-wei, WANG Wei, et al. Progress and key problems in the research on metal magnetic memory testing technology[J]. Chinese Journal of Engineering, 2020, 42(12): 1557-1572. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202012003.htm
    [18] ROSKOSZ M. Metal magnetic memory testing of welded joints of ferritic and austenitic steels[J]. NDT and E International, 2011, 44(3): 305-310. doi: 10.1016/j.ndteint.2011.01.008
    [19] DUBOV A A. A study of metal properties using the method of magnetic memory[J]. Metal Science and Heat Treatment, 1997, 39(9): 401-405. doi: 10.1007/BF02469065
    [20] HWANG J H, LORD W. Finite element modeling of magnetic field/defect interactions[J]. Journal of Testing and Evaluation, 1975, 3(1): 21-25. doi: 10.1520/JTE10129J
    [21] CHENG Yu-hua, WANG Yong-gang, YU Hai-chao, et al. Solenoid model for visualizing magnetic flux leakage testing of complex defects[J]. NDT and E International, 2018, 100: 166-174. doi: 10.1016/j.ndteint.2018.09.011
    [22] JILES D C, ATHERTON D L. Theory of the magnetisation process in ferromagnets and its application to the magnetomechanical effect[J]. Journal of Physics D: Applied Physics, 1984, 17(6): 1265-1281. doi: 10.1088/0022-3727/17/6/023
    [23] JILES D C. Theory of the magnetomechanical effect[J]. Journal of physics D: Applied Physics, 1995, 28(8): 1537-1546. doi: 10.1088/0022-3727/28/8/001
    [24] 周建庭, 赵亚宇, 何沁, 等. 基于磁记忆的镀锌钢绞线腐蚀检测试验[J]. 长安大学学报(自然科学版), 2019, 39(1): 81-89. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201901011.htm

    ZHOU Jian-ting, ZHAO Ya-yu, HE Qin, et al. Experimental of corrosion detection of galvanized steel strands based on magnetic memory[J]. Journal of Chang'an University (Natural Science Edition), 2019, 39(1): 81-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201901011.htm
    [25] 赵亚宇, 周建庭, 夏润川, 等. 基于磁记忆弱漏磁效应的钢绞线腐蚀检测[J]. 深圳大学学报(理工版), 2019, 36(3): 260-267. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201903006.htm

    ZHAO Ya-yu, ZHOU Jian-ting, XIA Run-chuan, et al. The detection of corrosion of steel strands based on weak magnetic flux leakage effect of metal magnetic memory[J]. Journal of Shenzhen University (Science and Engineering), 2019, 36(3): 260-267. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201903006.htm
    [26] XIA Run-chuan, ZHANG Hong, ZHOU Jian-ting, et al. Probability evaluation method of cable corrosion degree based on self-magnetic flux leakage[J]. Journal of Magnetism and Magnetic Materials, 2021, 522: 167544. doi: 10.1016/j.jmmm.2020.167544
    [27] WU Xin-jun, YUAN Jian-ming, BEN An-ran. A novel magnetic testing method for the loss of metallic cross-sectional area of bridge cables[J]. International Journal of Applied Electromagnetics and Mechanics, 2012, 39(1/2/3/4): 195-201.
    [28] 邱俊澧, 周建庭, 廖棱, 等. 锈蚀钢筋混凝土梁受弯承载力与自发漏磁相关性试验研究[J]. 建筑结构学报, 2020, 41(9): 127-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202009013.htm

    QIU Jun-li, ZHOU Jian-ting, LIAO Leng, et al. Experimental study on correlation between bending capacity and self-magnetic flux leakage of corroded RC beams[J]. Journal of Building Structures, 2020, 41(9): 127-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202009013.htm
    [29] SHI Peng-peng, BAI Pei-gen, CHEN Hong-en, et al. The magneto-elastoplastic coupling effect on the magnetic flux leakage signal[J]. Journal of Magnetism and Magnetic Materials, 2020, 504: 166669. doi: 10.1016/j.jmmm.2020.166669
    [30] WANG Z D, YAO K, DENG B, et al. Quantitative study of metal magnetic memory signal versus local stress concentration[J]. NDT and E International, 2010, 43(6): 513-518. doi: 10.1016/j.ndteint.2010.05.007
    [31] YAO K, WU L B, WANG Y S, et al. Nondestructive evaluation of contact damage of ferromagnetic materials based on metal magnetic memory method[J]. Experimental Techniques, 2019, 43(3): 273-285. doi: 10.1007/s40799-019-00311-5
    [32] 钱正春, 黄海鸿, 姜石林, 等. 铁磁性材料拉/压疲劳磁记忆信号研究[J]. 电子测量与仪器学报, 2016, 30(4): 506-517. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY201604002.htm

    QIAN Zheng-chun, HUANG Hai-hong, JIANG Shi-lin, et al. Research on magnetic memory signal of ferromagnetic material under tensile and compressive fatigue loading[J]. Journal of Electronic Measurement and Instrumentation, 2016, 30(4): 506-517. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY201604002.htm
    [33] 朱达荣, 潘志远, 刘涛, 等. 金属疲劳过程磁记忆信号多特征量提取研究[J]. 现代制造工程, 2018(10): 123-129. https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201810020.htm

    ZHU Da-rong, PAN Zhi-yuan, LIU Tao, et al. The magnetic memory signal wavelet packet frequency band energy feature extraction[J]. Modern Manufacturing Engineering, 2018(10): 123-129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201810020.htm
    [34] 龙飞飞, 王建锃, 宋阳, 等. 基于磁记忆的球墨铸铁疲劳损伤检测[J]. 无损检测, 2014, 36(8): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201408009.htm

    LONG Fei-fei, WANG Jian-zeng, SONG Yang, et al. The fatigue damage inspection of compressor crankshaft based on magnetic memory technology[J]. Nondestructive Testing, 2014, 36(8): 29-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201408009.htm
    [35] LI Chong-chong, DONG Li-hong, WANG Hai-dou, et al. Metal magnetic memory technique used to predict the fatigue crack propagation behavior of 0.45%C steel[J]. Journal of Magnetism and Magnetic Materials, 2016, 405: 150-157. doi: 10.1016/j.jmmm.2015.12.035
    [36] MENG Qing-ling, PAN Peng-chao, YANG Xin-lei, et al. Self-magnetic flux leakage-based detection and quantification for high-strength steel wires of bridge cables considering corrosion-fatigue coupling effect[J]. Journal of Magnetism and Magnetic Materials, 2022, 561: 169641. doi: 10.1016/j.jmmm.2022.169641
    [37] 郑思檬. 基于改进J-A模型的磁力学关系研究[D]. 沈阳: 沈阳工业大学, 2020.

    ZHENG Si-meng. Study on magneto-mechanical relationship based on improved J-A model[D]. Shenyang: Shenyang University of Technology, 2020. (in Chinese)
    [38] 时朋朋, 张鹏程, 金科, 等. 铁磁材料力磁耦合本构模型与微磁检测的定量化理论[C]//厦门大学. 2018远东无损检测新技术论坛论文集. 厦门: 厦门大学, 2018: 779-785.

    SHI Peng-peng, ZHANG Peng-cheng, JIN Ke, et al. Magneto-mechanical coupling constitutive relation and quantitative theory for metal magnetic memory testing methods[C]//Xiamen University. Proceedings of 2018 IEEE Far East NDT New Technology and Application Forum. Xiamen: Xiamen University, 2018: 779-785. (in Chinese)
    [39] 时朋朋. 缺陷漏磁场磁偶极子模型的若干解析解[J]. 无损检测, 2015, 37(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201503001.htm

    SHI Peng-peng. Analytical solutions of magnetic dipole model for defect leakage magnetic fields[J]. Nondestructive Testing, 2015, 37(3): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201503001.htm
    [40] 张贺. 基于弱磁法管道应力内检测技术研究[D]. 沈阳: 沈阳工业大学, 2022.

    ZHANG He. Research on pipeline stress internal detection technology based on weak magnetic method[D]. Shenyang: Shenyang University of Technology, 2022. (in Chinese)
    [41] SULIGA M, BOROWIK L, CHWASTEK K. Estimation of the level of residual stress in wires with a magnetic method[J]. Archives of Metallurgy and Materials, 2015, 60(1): 409-413. doi: 10.1515/amm-2015-0067
    [42] 刘清友, 罗旭, 朱海燕, 等. 基于Jiles-Atherton理论的铁磁材料塑性变形磁化模型修正[J]. 物理学报, 2017, 66(10): 297-306.

    LIU Qing-you, LUO Xu, ZHU Hai-yan, et al. Modeling plastic deformation effect on the hysteresis loops of ferromagnetic materials based on modified Jiles-Atherton model[J]. Acta Physica Sinica, 2017, 66(10): 297-306. (in Chinese)
    [43] SHI Peng-peng, JIN Ke, ZHENG Xiao-jing. A general nonlinear magnetomechanical model for ferromagnetic materials under a constant weak magnetic field[J]. Journal of Applied Physics, 2016, 119(14): 145103. doi: 10.1063/1.4945766
    [44] 黄爽. 锈蚀及持荷作用后钢筋混凝土梁疲劳性能及压磁效应研究[D]. 杭州: 浙江大学, 2022.

    HANG Shuang. Study on fatigue behavior and piezomagnetic effect of reinforced concrete beams after corrosion and sustained loading[D]. Hangzhou: Zhejiang University, 2022. (in Chinese)
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  297
  • HTML全文浏览量:  58
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-26
  • 网络出版日期:  2024-03-13
  • 刊出日期:  2024-02-25

目录

    /

    返回文章
    返回