留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

腐蚀-疲劳荷载耦合作用下桥梁拉索高强钢丝自漏磁信号变化规律

孟庆领 杨家炳 潘鹏超 杨新磊 王宝林 宋金博

孟庆领, 杨家炳, 潘鹏超, 杨新磊, 王宝林, 宋金博. 腐蚀-疲劳荷载耦合作用下桥梁拉索高强钢丝自漏磁信号变化规律[J]. 交通运输工程学报, 2024, 24(1): 202-217. doi: 10.19818/j.cnki.1671-1637.2024.01.013
引用本文: 孟庆领, 杨家炳, 潘鹏超, 杨新磊, 王宝林, 宋金博. 腐蚀-疲劳荷载耦合作用下桥梁拉索高强钢丝自漏磁信号变化规律[J]. 交通运输工程学报, 2024, 24(1): 202-217. doi: 10.19818/j.cnki.1671-1637.2024.01.013
MENG Qing-ling, YANG Jia-bing, PAN Peng-chao, YANG Xin-lei, WANG Bao-lin, SONG Jin-bo. Variation laws of self-magnetic flux leakage signals of high-strength steel wires in bridge cables under coupling effect of corrosion-fatigue loads[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 202-217. doi: 10.19818/j.cnki.1671-1637.2024.01.013
Citation: MENG Qing-ling, YANG Jia-bing, PAN Peng-chao, YANG Xin-lei, WANG Bao-lin, SONG Jin-bo. Variation laws of self-magnetic flux leakage signals of high-strength steel wires in bridge cables under coupling effect of corrosion-fatigue loads[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 202-217. doi: 10.19818/j.cnki.1671-1637.2024.01.013

腐蚀-疲劳荷载耦合作用下桥梁拉索高强钢丝自漏磁信号变化规律

doi: 10.19818/j.cnki.1671-1637.2024.01.013
基金项目: 

国家自然科学基金项目 52108163

江西省交通运输厅科技计划项目 2021H00006

江西省03专项及5G项目 20212ABC03A19

详细信息
    作者简介:

    孟庆领(1987-),男,河北廊坊人,天津城建大学副教授,工学博士,从事桥梁长期性能与耐久性研究

    通讯作者:

    王宝林(1984-),男,河南新乡人,天津市交通科学研究院高级工程师

  • 中图分类号: U443.38

Variation laws of self-magnetic flux leakage signals of high-strength steel wires in bridge cables under coupling effect of corrosion-fatigue loads

Funds: 

National Natural Science Foundation of China 52108163

Science and Technology Program of Department of Transportation of Jiangxi Province 2021H00006

03 Special and 5G Project of Jiangxi Province 20212ABC03A19

More Information
Article Text (Baidu Translation)
  • 摘要:

    为增强桥梁拉索高强钢丝漏磁检测的实用性,开展了腐蚀、应力单一因素作用试验与预腐蚀-疲劳-腐蚀、预疲劳-腐蚀-疲劳三阶段交互作用试验,阐述了腐蚀-疲劳耦合作用对自漏磁信号的影响机制。研究结果表明:腐蚀区域的自漏磁信号极值随腐蚀时间的增加而增加,且变化特征越发明显,腐蚀缺陷引起的异常自漏磁信号最大变化可达50 000 nT;随着疲劳加载循环次数的增加,无锈蚀高强钢丝自漏磁信号整体呈现先增加后稳定的趋势,当疲劳加载循环次数大于10 000时,磁场强度的增加速率降低且趋于平缓;预腐蚀后施加的交变应力场会削弱腐蚀缺陷引起的自漏磁信号,再次腐蚀后的磁场信号变化与预腐蚀程度有关,预腐蚀9 h后施加疲劳荷载,之后再腐蚀3 h,与单一腐蚀12 h相比,自漏磁信号强度削弱了32%;施加预疲劳交变应力场可强化磁场,导致腐蚀后自漏磁信号极值增加,当预疲劳加载循环次数从1 000增加至100 000时,自漏磁信号强度增大了30%。由此可见,早期腐蚀引起的高强钢丝异常自漏磁信号可被疲劳作用掩盖,考虑单一腐蚀与应力变化难以反映高强钢丝自漏磁检测效果,需综合考虑腐蚀-疲劳的耦合效应,以获得桥梁拉索高强钢丝自漏磁信号变化规律,从而为桥梁拉索无损检测提供分析依据。

     

  • 图  1  电化学腐蚀试验

    Figure  1.  Electrochemical corrosion test

    图  2  试验流程

    Figure  2.  Test flow

    图  3  磁场强度分布

    Figure  3.  Distributions of magnetic field intensities

    图  4  试件局部腐蚀区域的磁偶极子理论模型

    Figure  4.  Magnetic dipole theoretical model for local corrosion area of specimen

    图  5  x=150 mm时磁场强度随提离距离的变化曲线

    Figure  5.  Variation curve of magnetic field intensity with lifting distance at x=150 mm

    图  6  腐蚀钢丝SMFL信号分布

    Figure  6.  istributions of SMFL signals in corroded steel wires

    图  7  磁场强度随腐蚀时间的变化曲线

    Figure  7.  Variation curves of magnetic field intensities with corrosion time

    图  8  不同拉应力下高强钢丝SMFL信号分布

    Figure  8.  Distributions of SMFL signals of high-strength steel wires under different tensile stresses

    图  9  加-卸载后SMFL信号

    Figure  9.  SMFL signals after loading and unloading

    图  10  卸载后磁场强度随加载应力幅变化曲线

    Figure  10.  Variation curves of magnetic field intensity after unloading with loading stress amplitude

    图  11  弱磁场下磁场强度随应力的变化曲线

    Figure  11.  Variation curve of magnetic field intensity with stress under weak magnetic field

    图  12  疲劳荷载作用下SMFL信号分布与变化规律

    Figure  12.  Distributions and variation laws of SMFL signals under fatigue load

    图  13  预腐蚀-疲劳-腐蚀三阶段交互作用试验中高强钢丝SMFL信号分布

    Figure  13.  Distributions of SMFL signals of high-strength steel wires in three-stage interaction tests of pre-corrosion-fatigue-corrosion

    图  14  不同工况下高强钢丝SMFL信号分布

    Figure  14.  Distributions of SMFL signals of high-strength steel wires under different working conditions

    图  15  预疲劳-腐蚀-疲劳三阶段交互作用下高强钢丝SMFL信号分布

    Figure  15.  Distributions of SMFL signals of high-strength steel wires in three-stage interaction tests of pre-fatigue-corrosion-fatigue

    图  16  不同预疲劳加载循环次数下高强钢丝磁场强度变化曲线

    Figure  16.  Variation curves of magnetic field intensities of high-strength steel wires under different pre-fatigue loading cycle numbers

    表  1  镀锌钢丝微量元素占比

    Table  1.   Proportions of micro-elements in galvanized steel wire %

    元素 C Mn Si Cr Cu
    占比 0.90~0.95 0.30~0.90 0.12~1.20 ≤0.35 ≤0.20
    下载: 导出CSV

    表  2  镀锌钢丝宏观性能

    Table  2.   Macroscopic properties of galvanized steel wire

    参数 断后伸长率/% 密度/(g·cm-3) 强度/MPa 弹性模量/MPa
    取值 ≥4.0 7.85 1 860 2.0×105
    下载: 导出CSV

    表  3  试验工况

    Table  3.   Test conditions

    工况 编号 腐蚀宽度/mm 腐蚀时间/h 加载应力幅/MPa 疲劳加载次数
    腐蚀 C-1 1 1、2、3、4 0 0
    C-2 3 3、6、9、12 0 0
    C-3 5 5、10、15、20 0 0
    静拉应力 Y-1 0 0 0、260、520、780、1 040、1 300 0
    疲劳 F-1 0 0 0、260、520、780,1 040、1 300 10、100、1 000、10 000、100 000
    预腐蚀-疲劳-腐蚀 C-F-C-1 3 预腐蚀3 h,再腐蚀6 h 260 10、100、1 000、10 000、100 000
    C-F-C-2 3 预腐蚀6 h,再腐蚀9 h 260 10、100、1 000、10 000
    C-F-C-3 3 预腐蚀9 h,再腐蚀12 h 260 10、100、1 000
    预疲劳-腐蚀-疲劳 F-C-F-1 3 3 260 预疲劳加载1 000次,再疲劳加载10、100、1 000、10 000、100 000次
    F-C-F-2 3 6 260 预疲劳加载1 000次,再疲劳加载10、100、1 000、10 000次
    F-C-F-3 3 9 260 预疲劳加载1 000次,再疲劳加载10、100、1 000次
    F-C-F-4 3 3 260 预疲劳加载10 000次,再疲劳加载10、100、1 000、10 000、100 000次
    F-C-F-5 3 6 260 预疲劳加载10 000次,再疲劳加载10、100、1 000、10 000次
    F-C-F-6 3 9 260 预疲劳加载10 000次,再疲劳加载10、100、1 000次
    F-C-F-7 3 3 260 预疲劳加载100 000次,再疲劳加载10、100、1 000、10 000、100 000次
    F-C-F-8 3 6 260 预疲劳加载100 000次,再疲劳加载10、100、1 000、10 000次
    F-C-F-9 3 9 260 预疲劳加载100 000次,再疲劳加载10、100、1 000次
    下载: 导出CSV
  • [1] MAYRBAURL R M, CAMO S. Cracking and fracture of suspension bridge wire[J]. Journal of Bridge Engineering, 2001, 6(6): 645-650. doi: 10.1061/(ASCE)1084-0702(2001)6:6(645)
    [2] 缪长青, 尉廷华, 王义春, 等. 大跨桥梁缆索钢丝腐蚀速率的试验研究[J]. 西南交通大学学报, 2014, 49(3): 513-518. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201403022.htm

    MIAO Chang-qing, WEI Ting-hua, WANG Yi-chun, et al. Corrosion rate test of cable wires of large span bridge[J]. Journal of Southwest Jiaotong University, 2014, 49(3): 513-518. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201403022.htm
    [3] RAE P J, DICKSON P M. A review of the mechanism by which exploding bridge-wire detonators function[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475(2227): 20190120. doi: 10.1098/rspa.2019.0120
    [4] 杨世聪, 张劲泉, 姚国文. 在役桥梁拉吊索腐蚀-疲劳损伤与破断机理分析[J]. 公路交通科技, 2019, 36(3): 80-86. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201903012.htm

    YANG Shi-cong, ZHANG Jin-quan, YAO Guo-wen. Analysis on corrosion-fatigue damage and fracture mechanism of cables/hangers in service bridges[J]. Journal of Highway and Transportation Research and Development, 2019, 36(3): 80-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201903012.htm
    [5] 许福友, 陈艾荣, 张建仁. 缆索承重桥梁的颤振可靠性[J]. 中国公路学报, 2006, 19(5): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200605011.htm

    XU Fu-you, CHEN Ai-rong, ZHANG Jian-ren. Flutter reliability of cable supported bridge[J]. China Journal of Highway and Transport, 2006, 19(5): 59-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200605011.htm
    [6] 孙晓燕, 徐冲, 王海龙, 等. 用于疲劳可靠性分析的公路桥梁荷载效应研究[J]. 公路交通科技, 2011, 28(5): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201105016.htm

    SUN Xiao-yan, XU Chong, WANG Hai-long, et al. Investigation of highway bridge load effect for fatigue reliability analysis[J]. Journal of Highway and Transportation Research and Development, 2011, 28(5): 80-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201105016.htm
    [7] MAHMOUD K M. Fracture strength for a high strength steel bridge cable wire with a surface crack[J]. Theoretical and Applied Fracture Mechanics, 2007, 48(2): 152-160. doi: 10.1016/j.tafmec.2007.05.006
    [8] DENG Yang, LIU Yang, CHEN Su-ren. Long-term in-service monitoring and performance assessment of the main cables of long-span suspension bridges[J]. Sensors, 2017, 17(6): 1414. doi: 10.3390/s17061414
    [9] LIU Zhong-xiang, GUO Tong, HUANG Ling-yu, et al. Fatigue life evaluation on short suspenders of long-span suspension bridge with central clamps[J]. Journal of Bridge Engineering, 2017, 22(10): 04017074. doi: 10.1061/(ASCE)BE.1943-5592.0001097
    [10] LIU Zhong-xiang, GUO Tong, HEBDON M H, et al. Corrosion fatigue analysis and reliability assessment of short suspenders in suspension and arch bridges[J]. Journal of Performance of Constructed Facilities, 2018, 32(5): 04018060. doi: 10.1061/(ASCE)CF.1943-5509.0001203
    [11] 唐力伟, 张晓涛, 王平. 管状金属构件裂纹电磁声发射激发特性试验研究[J]. 振动与冲击, 2014, 33(19): 48-51, 58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201419010.htm

    TANG Li-wei, ZHANG Xiao-tao, WANG Ping. Tests for exciting features of electromagnetic acoustic emission of tubular metal parts'crack[J]. Journal of Vibration and Shock, 2014, 33(19): 48-51, 58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201419010.htm
    [12] 张闯, 刘素贞, 杨庆新, 等. 基于电磁声发射的金属板裂纹检测实验研究[J]. 电工电能新技术, 2011, 30(1): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DGDN201101019.htm

    ZHANG Chuang, LIU Su-zhen, YANG Qing-xin, et al. Experiment of crack detection of metal plate based on electromagnetically induced acoustic emission[J]. Advanced Technology of Electrical Engineering and Energy, 2011, 30(1): 84-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGDN201101019.htm
    [13] 高伟. 基于磁致伸缩导波长钢管及钢带非接触缺陷检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    GAO Wei. Research on noncontact defect detection technology of magnetostrictive guided wave for long steel pipe and steel strip[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese)
    [14] RAMANDI H L, CHEN Hong-hao, CROSKY A, et al. Interactions of stress corrosion cracks in cold drawn pearlitic steel wires: an X-ray micro-computed tomography study[J]. Corrosion Science, 2018, 145: 170-179. doi: 10.1016/j.corsci.2018.09.009
    [15] 汪友生, 徐小平, 沈兰荪. 铁磁材料的漏磁检测[J]. 电子测量与仪器学报, 2000, 14(3): 45-48, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY200003010.htm

    WANG You-sheng, XU Xiao-ping, SHEN Lan-sun. Testing of MFL for ferromagnetic materials[J]. Journal of Electronic Measurement and Instrument, 2000, 14(3): 45-48, 59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY200003010.htm
    [16] KARTHIK M M, TERZIOGLU T, HURLEBAUS S, et al. Magnetic flux leakage technique to detect loss in metallic area in external post-tensioning systems[J]. Engineering Structures, 2019, 201: 109-765.
    [17] 苏三庆, 刘馨为, 王威, 等. 金属磁记忆检测技术研究新进展与关键问题[J]. 工程科学学报, 2020, 42(12): 1557-1572. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202012003.htm

    SU San-qing, LIU Xin-wei, WANG Wei, et al. Progress and key problems in the research on metal magnetic memory testing technology[J]. Chinese Journal of Engineering, 2020, 42(12): 1557-1572. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202012003.htm
    [18] ROSKOSZ M. Metal magnetic memory testing of welded joints of ferritic and austenitic steels[J]. NDT and E International, 2011, 44(3): 305-310. doi: 10.1016/j.ndteint.2011.01.008
    [19] DUBOV A A. A study of metal properties using the method of magnetic memory[J]. Metal Science and Heat Treatment, 1997, 39(9): 401-405. doi: 10.1007/BF02469065
    [20] HWANG J H, LORD W. Finite element modeling of magnetic field/defect interactions[J]. Journal of Testing and Evaluation, 1975, 3(1): 21-25. doi: 10.1520/JTE10129J
    [21] CHENG Yu-hua, WANG Yong-gang, YU Hai-chao, et al. Solenoid model for visualizing magnetic flux leakage testing of complex defects[J]. NDT and E International, 2018, 100: 166-174. doi: 10.1016/j.ndteint.2018.09.011
    [22] JILES D C, ATHERTON D L. Theory of the magnetisation process in ferromagnets and its application to the magnetomechanical effect[J]. Journal of Physics D: Applied Physics, 1984, 17(6): 1265-1281. doi: 10.1088/0022-3727/17/6/023
    [23] JILES D C. Theory of the magnetomechanical effect[J]. Journal of physics D: Applied Physics, 1995, 28(8): 1537-1546. doi: 10.1088/0022-3727/28/8/001
    [24] 周建庭, 赵亚宇, 何沁, 等. 基于磁记忆的镀锌钢绞线腐蚀检测试验[J]. 长安大学学报(自然科学版), 2019, 39(1): 81-89. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201901011.htm

    ZHOU Jian-ting, ZHAO Ya-yu, HE Qin, et al. Experimental of corrosion detection of galvanized steel strands based on magnetic memory[J]. Journal of Chang'an University (Natural Science Edition), 2019, 39(1): 81-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201901011.htm
    [25] 赵亚宇, 周建庭, 夏润川, 等. 基于磁记忆弱漏磁效应的钢绞线腐蚀检测[J]. 深圳大学学报(理工版), 2019, 36(3): 260-267. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201903006.htm

    ZHAO Ya-yu, ZHOU Jian-ting, XIA Run-chuan, et al. The detection of corrosion of steel strands based on weak magnetic flux leakage effect of metal magnetic memory[J]. Journal of Shenzhen University (Science and Engineering), 2019, 36(3): 260-267. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201903006.htm
    [26] XIA Run-chuan, ZHANG Hong, ZHOU Jian-ting, et al. Probability evaluation method of cable corrosion degree based on self-magnetic flux leakage[J]. Journal of Magnetism and Magnetic Materials, 2021, 522: 167544. doi: 10.1016/j.jmmm.2020.167544
    [27] WU Xin-jun, YUAN Jian-ming, BEN An-ran. A novel magnetic testing method for the loss of metallic cross-sectional area of bridge cables[J]. International Journal of Applied Electromagnetics and Mechanics, 2012, 39(1/2/3/4): 195-201.
    [28] 邱俊澧, 周建庭, 廖棱, 等. 锈蚀钢筋混凝土梁受弯承载力与自发漏磁相关性试验研究[J]. 建筑结构学报, 2020, 41(9): 127-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202009013.htm

    QIU Jun-li, ZHOU Jian-ting, LIAO Leng, et al. Experimental study on correlation between bending capacity and self-magnetic flux leakage of corroded RC beams[J]. Journal of Building Structures, 2020, 41(9): 127-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202009013.htm
    [29] SHI Peng-peng, BAI Pei-gen, CHEN Hong-en, et al. The magneto-elastoplastic coupling effect on the magnetic flux leakage signal[J]. Journal of Magnetism and Magnetic Materials, 2020, 504: 166669. doi: 10.1016/j.jmmm.2020.166669
    [30] WANG Z D, YAO K, DENG B, et al. Quantitative study of metal magnetic memory signal versus local stress concentration[J]. NDT and E International, 2010, 43(6): 513-518. doi: 10.1016/j.ndteint.2010.05.007
    [31] YAO K, WU L B, WANG Y S, et al. Nondestructive evaluation of contact damage of ferromagnetic materials based on metal magnetic memory method[J]. Experimental Techniques, 2019, 43(3): 273-285. doi: 10.1007/s40799-019-00311-5
    [32] 钱正春, 黄海鸿, 姜石林, 等. 铁磁性材料拉/压疲劳磁记忆信号研究[J]. 电子测量与仪器学报, 2016, 30(4): 506-517. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY201604002.htm

    QIAN Zheng-chun, HUANG Hai-hong, JIANG Shi-lin, et al. Research on magnetic memory signal of ferromagnetic material under tensile and compressive fatigue loading[J]. Journal of Electronic Measurement and Instrumentation, 2016, 30(4): 506-517. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY201604002.htm
    [33] 朱达荣, 潘志远, 刘涛, 等. 金属疲劳过程磁记忆信号多特征量提取研究[J]. 现代制造工程, 2018(10): 123-129. https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201810020.htm

    ZHU Da-rong, PAN Zhi-yuan, LIU Tao, et al. The magnetic memory signal wavelet packet frequency band energy feature extraction[J]. Modern Manufacturing Engineering, 2018(10): 123-129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201810020.htm
    [34] 龙飞飞, 王建锃, 宋阳, 等. 基于磁记忆的球墨铸铁疲劳损伤检测[J]. 无损检测, 2014, 36(8): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201408009.htm

    LONG Fei-fei, WANG Jian-zeng, SONG Yang, et al. The fatigue damage inspection of compressor crankshaft based on magnetic memory technology[J]. Nondestructive Testing, 2014, 36(8): 29-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201408009.htm
    [35] LI Chong-chong, DONG Li-hong, WANG Hai-dou, et al. Metal magnetic memory technique used to predict the fatigue crack propagation behavior of 0.45%C steel[J]. Journal of Magnetism and Magnetic Materials, 2016, 405: 150-157. doi: 10.1016/j.jmmm.2015.12.035
    [36] MENG Qing-ling, PAN Peng-chao, YANG Xin-lei, et al. Self-magnetic flux leakage-based detection and quantification for high-strength steel wires of bridge cables considering corrosion-fatigue coupling effect[J]. Journal of Magnetism and Magnetic Materials, 2022, 561: 169641. doi: 10.1016/j.jmmm.2022.169641
    [37] 郑思檬. 基于改进J-A模型的磁力学关系研究[D]. 沈阳: 沈阳工业大学, 2020.

    ZHENG Si-meng. Study on magneto-mechanical relationship based on improved J-A model[D]. Shenyang: Shenyang University of Technology, 2020. (in Chinese)
    [38] 时朋朋, 张鹏程, 金科, 等. 铁磁材料力磁耦合本构模型与微磁检测的定量化理论[C]//厦门大学. 2018远东无损检测新技术论坛论文集. 厦门: 厦门大学, 2018: 779-785.

    SHI Peng-peng, ZHANG Peng-cheng, JIN Ke, et al. Magneto-mechanical coupling constitutive relation and quantitative theory for metal magnetic memory testing methods[C]//Xiamen University. Proceedings of 2018 IEEE Far East NDT New Technology and Application Forum. Xiamen: Xiamen University, 2018: 779-785. (in Chinese)
    [39] 时朋朋. 缺陷漏磁场磁偶极子模型的若干解析解[J]. 无损检测, 2015, 37(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201503001.htm

    SHI Peng-peng. Analytical solutions of magnetic dipole model for defect leakage magnetic fields[J]. Nondestructive Testing, 2015, 37(3): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201503001.htm
    [40] 张贺. 基于弱磁法管道应力内检测技术研究[D]. 沈阳: 沈阳工业大学, 2022.

    ZHANG He. Research on pipeline stress internal detection technology based on weak magnetic method[D]. Shenyang: Shenyang University of Technology, 2022. (in Chinese)
    [41] SULIGA M, BOROWIK L, CHWASTEK K. Estimation of the level of residual stress in wires with a magnetic method[J]. Archives of Metallurgy and Materials, 2015, 60(1): 409-413. doi: 10.1515/amm-2015-0067
    [42] 刘清友, 罗旭, 朱海燕, 等. 基于Jiles-Atherton理论的铁磁材料塑性变形磁化模型修正[J]. 物理学报, 2017, 66(10): 297-306.

    LIU Qing-you, LUO Xu, ZHU Hai-yan, et al. Modeling plastic deformation effect on the hysteresis loops of ferromagnetic materials based on modified Jiles-Atherton model[J]. Acta Physica Sinica, 2017, 66(10): 297-306. (in Chinese)
    [43] SHI Peng-peng, JIN Ke, ZHENG Xiao-jing. A general nonlinear magnetomechanical model for ferromagnetic materials under a constant weak magnetic field[J]. Journal of Applied Physics, 2016, 119(14): 145103. doi: 10.1063/1.4945766
    [44] 黄爽. 锈蚀及持荷作用后钢筋混凝土梁疲劳性能及压磁效应研究[D]. 杭州: 浙江大学, 2022.

    HANG Shuang. Study on fatigue behavior and piezomagnetic effect of reinforced concrete beams after corrosion and sustained loading[D]. Hangzhou: Zhejiang University, 2022. (in Chinese)
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  414
  • HTML全文浏览量:  383
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-26
  • 网络出版日期:  2024-03-13
  • 刊出日期:  2024-02-25

目录

    /

    返回文章
    返回