Investigation on mechanical properties of steel-ECC/UHPC composite girders in negative moment regions
-
摘要:
为改善钢-混组合梁负弯矩区混凝土易开裂缺点,引入工程水泥基复合材料(ECC)和超高性能混凝土(UHPC)代替普通混凝土(NC)形成钢-ECC/UHPC组合梁,展开了1片钢-NC组合梁、1片钢-ECC组合梁和2片钢-UHPC组合梁的负弯矩区静力试验;结合有限元分析方法对比了不同类型混凝土的应变、裂缝扩展与分布特点,分析了混凝土类型和配筋对钢-混组合梁破坏形态、承载能力与变形能力影响规律。研究结果表明:钢-混组合梁在负弯矩作用下整体协同工作性能良好,破坏形态均为弯曲破坏;ECC和UHPC裂缝呈现纤细的特点,ECC尤为明显;与钢-NC组合梁相比,钢-ECC组合梁和钢-UHPC组合梁的开裂荷载分别提高了2.00和2.75倍,抗弯刚度分别提高了17.23%和35.73%,抗弯承载力分别提高了9.00%和6.81%,表明UHPC抗裂能力更强,可以有效改善钢-混组合梁负弯矩区桥面板抗裂性能,ECC与UHPC代替NC可以提高钢-混组合梁的抗弯刚度和承载力;配筋与无筋钢-UHPC组合梁的开裂荷载和前期刚度无显著差异,无筋钢-UHPC组合梁破坏时形成贯通裂缝,其承载力相比配筋钢-UHPC组合梁下降了13.39%;ECC强度增加,钢-ECC组合梁承载力提高较显著,UHPC强度变化对钢-UHPC组合梁承载力影响不明显;配筋率对钢-UHPC组合梁承载力影响可分为2个阶段,当配筋率小于1.6%时承载力显著增长,当超过1.6%时承载力增幅趋缓。
Abstract:In order to improve the concrete cracking defect in the negative moment regions of steel-concrete composite girders, the engineered cementitious composite (ECC) and ultra-high performance concrete (UHPC) were introduced to replace the normal concrete (NC) to form the steel-ECC/UHPC composite girders. The tests of static mechanical properties in the negative moment regions were carried out, involving one steel-NC composite girder, one steel-ECC composite girder, and two steel-UHPC composite girders. The finite element analysis method was utilized to compare the strain, crack propagation, and distribution characteristics of different types of concretes. The influences of concrete type and reinforcement on the failure mode, bearing capacity and deformation capacity of steel-concrete composite girders were analyzed. Research results show that the steel-concrete composite girders have good overall cooperative performance under negative moments, and the failure modes are all bending failure. Cracks in the ECC and UHPC are delicate, especially in the ECC. Compared with the steel-NC composite girder, the cracking loads of steel-ECC and steel-UHPC composite girders increase by 2.00 and 2.75 times, the flexural stiffnesses increase by 17.23% and 35.73%, and the flexural capacities increase by 9.00% and 6.81%, respectively. Therefore, the UHPC has stronger crack resistance, effectively improving the crack resistance of bridge decks in negative moment region of the steel-concrete composite girders. Moreover, using the ECC and UHPC to replace the NC can enhance the flexural stiffness and bearing capacity of steel-concrete composite girders. There is no significant difference in the cracking load and early stiffness between the reinforced and unreinforced steel-UHPC composite girders. When the unreinforced steel-UHPC composite girder fails, the through cracks form, and its bearing capacity decreases by 13.39% compared to the reinforced steel-UHPC composite girder. As the ECC strength increases, the bearing capacity of steel-ECC composite girder improves significantly. The influence of UHPC strength on the bearing capacity of steel-UHPC composite girder is not obvious. The impact of reinforcement ratio on the bearing capacity of steel-UHPC composite girder can be divided into two stages. When the reinforcement ratio is below 1.6%, the bearing capacity increases significantly, and when it exceeds 1.6%, the growth rate of bearing capacity slows down.
-
Key words:
- bridge engineering /
- steel-concrete composite girder /
- model test /
- negative moment /
- ECC /
- UHPC
-
表 1 试验梁设置
Table 1. Test girders setting
梁号 混凝土类型 配筋 SNCB-1 NC 有 SECB-1 ECC 有 SUCB-1 UHPC 有 SUCB-0 UHPC 无 表 2 材料性能参数
Table 2. Material performance parameters
材料类型 规格 fy/MPa fcu/MPa ftu/MPa Es/GPa 纵向钢筋 HRB400 388.20 493.50 212.30 H型钢 Q345C 375.00 501.00 209.80 NC C50 61.78 3.05 37.53 ECC C50 60.99 4.63 19.60 UHPC C120 127.70 6.90 42.65 表 3 混凝土材料塑性损伤参数
Table 3. Plastic damage parameters of concrete material
参数 膨胀角/(°) 偏心率 强度比 常应力比值 黏聚系数 取值 30 0.1 1.16 0.666 7 0.000 5 表 4 试验与模拟结果对比
Table 4. Comparison of test and simulation results
梁号 试验值/kN 模拟值/kN 模拟值/试验值 SNCB-1 411 372.7 0.907 SECB-1 448 413.1 0.922 SUCB-1 439 420.3 0.957 SUCB-0 388 374.6 0.966 -
[1] 聂建国, 陈林, 肖岩. 钢-混凝土组合梁正弯矩区截面的组合抗剪性能[J]. 清华大学学报(自然科学版), 2002(6): 835-838. doi: 10.3321/j.issn:1000-0054.2002.06.034NIE Jian-guo, CHEN Lin, XIAO Yan. Composite shear behavior of steel-concrete composite beams under sagging moment[J]. Journal of Tsinghua University(Science and Technology), 2002(6): 835-838. (in Chinese) doi: 10.3321/j.issn:1000-0054.2002.06.034 [2] 罗兵, 马冰. 钢-UHPC-NC组合梁负弯矩区受力性能试验研究[J]. 桥梁建设, 2021, 51(1): 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202101010.htmLUO Bing, MA Bing. Experimental study of fatigue performance of steel-UHPC-NC composite beam in negative moment zone[J]. Bridge Construction, 2021, 51(1): 58-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202101010.htm [3] 刘永健, 刘江. 钢-混凝土组合梁桥温度作用与效应综述[J]. 交通运输工程学报, 2020, 20(1): 42-59. doi: 10.19818/j.cnki.1671-1637.2020.01.003LIU Yong-jian, LIU Jiang. Review on temperature action and effect of steel-concrete composite girder bridge[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 42-59. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.003 [4] WANG Yu-hang, NIE Jian-guo, LI Jian-jun. Study on fatigue property of steel-concrete composite beams and studs[J]. Journal of Constructional Steel Research, 2014, 94: 1-10. doi: 10.1016/j.jcsr.2013.11.004 [5] 聂建国, 余志武. 钢-混凝土组合梁在我国的研究及应用[J]. 土木工程学报, 1999, 32(2): 3-8. doi: 10.3321/j.issn:1000-131X.1999.02.001NIE Jian-guo, YU Zhi-wu. Research and practice of composite steel-concrete beams in China[J]. China Civil Engineering Journal, 1999, 32(2): 3-8. (in Chinese)) doi: 10.3321/j.issn:1000-131X.1999.02.001 [6] 余志武, 张大付, 焦姣. 钢-混凝土连续组合箱梁负弯矩区极限抗弯承载力研究[J]. 铁道科学与工程学报, 2014, 11(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201402002.htmYU Zhi-wu, ZHANG Da-fu, JIAO Jiao. Research on ultimate flexural bearing capacity of negative moment area for steel-concrete composite continuous box girder[J]. Journal of Railway Science and Engineering, 2014, 11(2): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201402002.htm [7] 邵旭东, 胡伟业, 邱明红, 等. 组合梁负弯矩区UHPC接缝抗弯性能试验[J]. 中国公路学报, 2021, 34(8): 246-260. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202108021.htmSHAO Xu-dong, HU Wei-ye, QIU Ming-hong, et al. Experiment on flexural behavior of UHPC joint in negative moment area of composite bridges[J]. China Journal of Highway and Transport, 2021, 34(8): 246-260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202108021.htm [8] SU Qing-tian, DAI Chang-yuan, XU Chen. Full-scale experimental study on the negative flexural behavior of orthotropic steel-concrete composite bridge deck[J]. Journal of Bridge Engineering, 2018, 23(12): 04018097. doi: 10.1061/(ASCE)BE.1943-5592.0001320 [9] 戴昌源, 苏庆田. 钢-混凝土组合桥面板负弯矩区裂缝宽度计算[J]. 同济大学学报(自然科学版), 2017, 45(6): 806-813. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201706004.htmDAI Chang-yuan, SU Qing-tian. Crack width calculation of steel-concrete composite bridge deck in negative moment region[J]. Journal of Tongji University(Natural Science), 2017, 45(6): 806-813. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201706004.htm [10] LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246-2264. doi: 10.1061/(ASCE)0733-9399(1992)118:11(2246) [11] LI V C, WANG Shu-xin, WU C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2001, 98(6): 483-492. [12] 曹明莉, 许玲, 张聪. 高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势[J]. 硅酸盐学报, 2015, 43(5): 632-642. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201505013.htmCAO Ming-li, XU Ling, ZHANG Cong. Review on micromechanical design, performance and development tendency of engineered cementitious composite[J]. Journal of the Chinese Ceramic Society, 2015, 43(5): 632-642. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201505013.htm [13] 潘钻峰, 汪卫, 孟少平, 等. 混杂聚乙烯醇纤维增强水泥基复合材料力学性能[J]. 同济大学学报(自然科学版), 2015, 43(1): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201501006.htmPAN Zuan-feng, WANG Wei, MENG Shao-ping, et al. Study on mechanical properties of hybrid PVA fibers reinforced cementitious composites[J]. Journal of Tongji University (Natural Science), 2015, 43(1): 33-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201501006.htm [14] 陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3): 1-24. doi: 10.3969/j.issn.1673-2049.2014.03.002CHEN Bao-chun, JI Tao, HUANG Qing-wei, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24. (in Chinese) doi: 10.3969/j.issn.1673-2049.2014.03.002 [15] RAHEEM A H A, MAHDY M, MASHALY A A. Mechanical and fracture mechanics properties of ultra-high- performance concrete[J]. Construction and Building Materials, 2019, 213: 561-566. doi: 10.1016/j.conbuildmat.2019.03.298 [16] 邵旭东, 樊伟, 黄政宇. 超高性能混凝土在结构中的应用[J]. 土木工程学报, 2021, 54(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202101001.htmSHAO Xu-dong, FAN Wei, HUANG Zheng-yu. Application of ultra-high-performance concrete in engineering structures[J]. China Civil Engineering Journal, 2021, 54(1): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202101001.htm [17] DONG Bing-qing, PAN Jin-long, LU Cong. Flexural behavior of steel reinforced engineered cementitious composite beams[J]. Journal of Southeast University (English Edition), 2019, 35(1): 72-82. [18] 樊健生, 施正捷, 芶双科, 等. 钢-ECC组合梁负弯矩区受弯性能试验研究[J]. 土木工程学报, 2017, 50(4): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201704008.htmFAN Jian-sheng, SHI Zheng-jie, GOU Shuang-ke, et al. Experimental research on negative bending behavior of steel-ECC composite beams[J]. China Civil Engineering Journal, 2017, 50(4): 64-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201704008.htm [19] FAN Jian-sheng, GOU Shuang-ke, DING Ran, et al. Experimental and analytical research on the flexural behaviour of steel-ECC composite beams under negative bending moments[J]. Engineering Structures, 2020, 210: 110309. doi: 10.1016/j.engstruct.2020.110309 [20] 孙启力. 钢-混杂纤维ECC组合受力行为及其在桥梁中的应用研究[D]. 北京: 清华大学, 2019.SUN Qi-li. The composite behavior of steel and hybrid-fiber engineered cementitious composites and its application in bridge[D]. Beijing: Tsinghua University, 2019. (in Chinese) [21] 樊健生, 刘入瑞, 张君, 等. 采用混杂纤维ECC的叠合板组合梁负弯矩受力性能试验研究[J]. 土木工程学报, 2021, 54(4): 57-67. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202104007.htmFAN Jian-sheng, LIU Ru-rui, ZHANG Jun, et al. Experimental research on mechanical behavior of composite beams with precast slabs and hybrid fiber ECC under negative moment[J]. China Civil Engineering Journal, 2021, 54(4): 57-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202104007.htm [22] XUE Jun-qing, BRISEGHELLA B, HUANG Fu-yun, et al. Review of ultra-high performance concrete and its application in bridge engineering[J]. Construction and Building Materials, 2020, 260: 119844. doi: 10.1016/j.conbuildmat.2020.119844 [23] 张清华, 韩少辉, 贾东林, 等. 新型装配式UHPC华夫型上翼缘组合梁受力性能[J]. 西南交通大学学报, 2019, 54(3): 445-452, 442. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201903001.htmZHANG Qing-hua, HAN Shao-hui, JIA Dong-lin, et al. Mechanical performance of novel prefabricated composite girder with top flange of ultra hight performance concrete waffle deck panel[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 445-452, 442. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201903001.htm [24] 邵旭东, 吴佳佳, 刘榕, 等. 钢-UHPC轻型组合桥梁结构华夫桥面板的基本性能[J]. 中国公路学报, 2017, 30(3): 218-225, 245. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703024.htmSHAO Xu-dong, WU Jia-jia, LIU Rong, et al. Basic performance of waffle deck panel of light weight steel-UHPC composite bridge[J]. China Journal of Highway and Transport, 2017, 30(3): 218-225, 245. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703024.htm [25] 邵旭东, 罗军, 曹君辉, 等. 钢-UHPC轻型组合桥面结构试验及裂缝宽度计算研究[J]. 土木工程学报, 2019, 52(3): 61-75. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201903007.htmSHAO Xu-dong, LUO Jun, CAO Jun-hui, et al. Experimental study and crack width calculation of steel-UHPC lightweight composite deck structure[J]. China Civil Engineering Journal, 2019, 52(3): 61-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201903007.htm [26] 刘新华, 周聪, 张建仁, 等. 钢-UHPC组合梁负弯矩区受力性能试验[J]. 中国公路学报, 2020, 33(5): 110-121. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202005010.htmLIU Xin-hua, ZHOU Cong, ZHANG Jian-ren, et al. Experiment on negative bending behavior of steel-UHPC composite beams[J]. China Journal of Highway and Transport, 2020, 33(5): 110-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202005010.htm [27] ZHANG Yang, CAI Shu-kun, ZHU Yan-ping, et al. Flexural responses of steel-UHPC composite beams under hogging moment[J]. Engineering Structures, 2020, 206: 110134. doi: 10.1016/j.engstruct.2019.110134 [28] ZHAO Qiu, XIAO Feng, ZHANG Hao, et al. Behavior and reasonable design of steel-UHPC composite beams under negative moment[J]. Journal of Constructional Steel Research, 2024, 212: 108268. doi: 10.1016/j.jcsr.2023.108268 [29] XU Bo, LIU Yong-jian, ZHU Wei-qing, et al. Comparative study on flexural behavior of steel-UHPC composite beams and steel-ordinary concrete composite beams in the negative moment zone[J]. Structures, 2023, 57: 105288. doi: 10.1016/j.istruc.2023.105288 [30] YUAN Fang, PAN Jin-long, WU Yu-fei. Numerical study on flexural behaviors of steel reinforced engineered cementitious composite (ECC) and ECC/concrete composite beams[J]. Science China Technological Sciences, 2014, 57(3): 637-645. doi: 10.1007/s11431-014-5478-4 [31] 杨剑, 方志. 超高性能混凝土单轴受压应力-应变关系研究[J]. 混凝土, 2008(7): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200807009.htmYANG Jian, FANG Zhi. Research on stress-strain relation of ultra high performance concrete[J]. Concrete, 2008(7): 11-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200807009.htm [32] 张哲, 邵旭东, 李文光, 等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201508008.htmZHANG Zhe, SHAO Xu-dong, LI Wen-guang, et al. Axial tensile behavior test of ultra high performance concrete[J]. China Journal of Highway and Transport, 2015, 28(8): 50-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201508008.htm