留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锈蚀分布对斜拉索承载能力的作用效应

徐俊 张志乐 林志平

徐俊, 张志乐, 林志平. 锈蚀分布对斜拉索承载能力的作用效应[J]. 交通运输工程学报, 2024, 24(1): 232-244. doi: 10.19818/j.cnki.1671-1637.2024.01.015
引用本文: 徐俊, 张志乐, 林志平. 锈蚀分布对斜拉索承载能力的作用效应[J]. 交通运输工程学报, 2024, 24(1): 232-244. doi: 10.19818/j.cnki.1671-1637.2024.01.015
XU Jun, ZHANG Zhi-le, LIN Zhi-ping. Action effect of corrosion distribution on bearing capacity of stayed cables[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 232-244. doi: 10.19818/j.cnki.1671-1637.2024.01.015
Citation: XU Jun, ZHANG Zhi-le, LIN Zhi-ping. Action effect of corrosion distribution on bearing capacity of stayed cables[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 232-244. doi: 10.19818/j.cnki.1671-1637.2024.01.015

锈蚀分布对斜拉索承载能力的作用效应

doi: 10.19818/j.cnki.1671-1637.2024.01.015
基金项目: 

国家自然科学基金项目 52208214

福建省交通运输科技项目 202126

详细信息
    作者简介:

    徐俊(1978-),男,江苏无锡人,同济大学讲师,工学博士,从事锈蚀与疲劳损伤演化机理研究

  • 中图分类号: U443.38

Action effect of corrosion distribution on bearing capacity of stayed cables

Funds: 

National Natural Science Foundation of China 52208214

Transportation Science and Technology Project of Fujian Province 202126

More Information
  • 摘要:

    为了提高斜拉索极限承载力评估的精度,考虑了斜拉索锈蚀损伤的影响,建立了锈蚀钢丝力学性能模型,模拟了完好与锈蚀钢丝的力学性能;以3种典型截面锈蚀分布模型模式和3种典型索长方向锈蚀分布模型类型的联合作用为前提,分析了斜拉索内不同位置处的锈蚀程度,研究了斜拉索的锈蚀分布规律;采用蒙特卡罗方法模拟了不同锈蚀程度下索内钢丝的力学性能,最终得到了索的极限承载力以及斜拉索达到极限承载力时的断丝数,统计分析了斜拉索极限承载力、断丝数、锈蚀深度以及截面锈蚀率之间的相关关系,分析了锈蚀分布规律的影响。分析结果表明:不同锈蚀分布条件下,锈蚀斜拉索达到极限承载力时的断丝数的样本均值相差可达到约3倍,而斜拉索极限承载力的样本均值变化可达到约20%;虽然锈蚀斜拉索达到极限承载力时的断丝数随着锈蚀程度增加而增加,但是断丝数与极限承载力间的相关性较差,在某些锈蚀分布条件下甚至仅为0.014;为了保证斜拉索的安全可靠性,不宜以断丝数作为评估索承载力的技术指标。

     

  • 图  1  完好钢丝的本构关系曲线

    Figure  1.  Constitutive relation curve of intact steel wire

    图  2  σucσecRm的关系

    Figure  2.  Relationship among σuc, σec and Rm

    图  3  εecεucRm的关系

    Figure  3.  Relationship among εec, εuc and Rm

    图  4  钢丝上下两侧的不同锈蚀程度

    Figure  4.  Different corrosion degrees of upper and lower surfaces of steel wire

    图  5  不同锈蚀分布模型下Rs的概率分布

    Figure  5.  Probability distributions of Rs under different corrosion distribution models

    图  6  索长方向锈蚀分布模型

    Figure  6.  Corrosion distribution models along cable length direction

    图  7  模式1下FuN的均值

    Figure  7.  Mean values of Fu and N in mode 1

    图  8  模式2下FuN的均值

    Figure  8.  Mean values of Fu and N in mode 2

    图  9  模式3下FuN的均值

    Figure  9.  Mean values of Fu and N in mode 3

    图  10  模式1时NFu的统计特征

    Figure  10.  Statistical characteristics of N and Fu in mode 1

    图  11  模式2时NFu的统计特征

    Figure  11.  Statistical characteristics of N and Fu in mode 2

    图  12  模式1、类型B锈蚀分布条件下斜拉索在极限状态下NFu的统计直方图

    Figure  12.  Statistical histograms of N and Fu in ultimate state under corrosion distribution condition of mode 1 and type B

    图  13  锈蚀斜拉索中NFu的关系

    Figure  13.  Relationships between N and Fu in corroded stayed cable

    图  14  NFuRmc之间的关系曲线

    Figure  14.  Relationship curves of N, Fu and Rmc

    表  1  钢丝力学性能统计参数

    Table  1.   Statistical parameters of mechanical properties of steel wires

    参数 平均值 标准差 概率分布
    σe/MPa 1 511.86 53.35 对数正态
    εe/10-3 7.54 0.27 对数正态
    σu/MPa 1 696.71 52.36 Weibull
    εu/10-3 64.69 6.73 对数正态
    下载: 导出CSV

    表  2  斜拉索锈蚀分布

    Table  2.   Corrosion distributions of stayed cables

    截面锈蚀分布模型 索长方向锈蚀分布模型 dmax/mm
    模式1 类型A 0.5
    1.0
    1.5
    类型B 0.5
    1.0
    1.5
    类型C 0.5
    1.0
    1.5
    模式2 类型A 0.5
    1.0
    1.5
    类型B 0.5
    1.0
    1.5
    类型C 0.5
    1.0
    1.5
    模式3 类型A 0.5
    1.0
    1.5
    类型B 0.5
    1.0
    1.5
    类型C 0.5
    1.0
    1.5
    下载: 导出CSV

    表  3  斜拉索2%断丝时达到极限承载力的概率

    Table  3.   Probabilities of reaching ultimate bearing capacity when 2% wires are broken in stayed cables %

    锈蚀类型 类型A 类型B 类型C
    dmax/mm 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5
    模式1 40.599 10.312 4.483 43.322 8.701 0.970 32.706 10.633 0.881
    模式2 27.615 0.744 0.009 35.498 1.649 0.009 17.992 0.409 0.004
    模式3 54.953 19.597 5.673 55.814 26.179 7.922 50.733 17.483 3.741
    下载: 导出CSV

    表  4  斜拉索截面锈蚀率

    Table  4.   Corrosion rates of stayed cable sections

    dmax/mm 斜拉索截面锈蚀率Rmc
    模式1 模式2 模式3
    0.5 0.19 0.11 0.16
    1.0 0.35 0.22 0.31
    1.5 0.50 0.31 0.45
    下载: 导出CSV
  • [1] ENGELUND S, FABER M. Planning of ultrasonic inspections of parallel wire cables[C]//ASCE. Proceedings of 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability. Reston: ASCE, 2000: 1-6.
    [2] FAN Bing-hui, SU Jia-zhan, CHEN Bao-chun. Condition evaluation for through and half-through arch bridges considering robustness of suspended deck systems[J]. Advances in Structural Engineering, 2020, 24(5): 962-976.
    [3] NI Yan-chun, ZHANG Qi-wei, XIN Rong-ya. Magnetic flux detection and identification of bridge cable metal area loss damage[J]. Measurement, 2021, 167(10): 108443.
    [4] SARCOS-PORTILLO A, NAVARRO-CERPA A, GARCIA-LEGL H. Inspection and process of tension of cables of General Rafael Urdaneta Bridge[J]. Journal of Bridge Engineering, 2003, 8(4): 223-228. doi: 10.1061/(ASCE)1084-0702(2003)8:4(223)
    [5] MATTEO J, DEODATIS G, BILLINGTON D P. Safety analysis of suspension-bridge cables: Williamsburg Bridge[J]. Journal of Structural Engineering, 1996, 120(11): 3197-3211.
    [6] STALLINGS J M, FRANK K H. Stay-cable fatigue behavior[J]. Journal of Structural Engineering, 1991, 117(3): 936-950. doi: 10.1061/(ASCE)0733-9445(1991)117:3(936)
    [7] FABER M H, ENGELUND S, RACKWITZ R. Aspects of parallel wire cable reliability[J]. Structural Safety, 2003, 25(2): 201-225. doi: 10.1016/S0167-4730(02)00057-7
    [8] CAMO S. Probabilistic strength estimates and reliability of damaged parallel wire cables[J]. Journal of Bridge Engineering, 2003, 8(5): 297-311. doi: 10.1061/(ASCE)1084-0702(2003)8:5(297)
    [9] ELACHACHI S M, BREYSSE D, YOTTE S, et al. A probabilistic multi-scale time dependent model for corroded structural suspension cables[J]. Probabilistic Engineering Mechanics, 2006, 21(3): 235-245. doi: 10.1016/j.probengmech.2005.10.006
    [10] LAN Cheng-ming, WU Jing-yu, BAI Na-ni, et al. Size effect on tensile strength of parallel CFRP wire stay cable[J]. Composite Structures, 2017, 181(2): 96-111.
    [11] KARANCI E, BETTI R. Modeling corrosion in suspension bridge main cables. Ⅱ: long-term corrosion and remaining strength[J]. Journal of Bridge Engineering, 2018, 23(6): 04018026. doi: 10.1061/(ASCE)BE.1943-5592.0001234
    [12] LIU Zhong-xiang, GUO Tong, HAN Da-guang, et al. Experimental study on corrosion-fretting fatigue behavior of bridge cable wires[J]. Journal of Bridge Engineering, 2020, 25(12): 04020104. doi: 10.1061/(ASCE)BE.1943-5592.0001642
    [13] TIAN Hao, WANG Ji-ji, CAO Su-gong, et al. Probabilistic assessment of the safety of main cables for long-span suspension bridges considering corrosion effects[J]. Advances in Civil Engineering, 2021, 4: 6627762.
    [14] LIU Xiao-dong, HAN Wan-shui, YUAN Yang-guang, et al. Corrosion fatigue assessment and reliability analysis of short suspender of suspension bridge depending on refined traffic and wind load condition[J]. Engineering Structures, 2021, 234: 111950. doi: 10.1016/j.engstruct.2021.111950
    [15] HOPWOOD T, HAVENS J H. Inspection, prevention, and remedy of suspension bridge cable corrosion problems[R]. Lexington: Kentucky Transportation Research Program, 1984.
    [16] 潘骁宇, 谢旭, 李晓章, 等. 锈蚀高强度钢丝的力学性能与评级方法[J]. 浙江大学学报(工学版), 2014, 48(11): 1917-1924. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201411002.htm

    PAN Xiao-yu, XIE Xu, LI Xiao-zhang, et al. Mechanical properties and grading method of corroded high-tensile steel wires[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(11): 1917-1924. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201411002.htm
    [17] LI Hui, LAN Cheng-ming, JU Yang, et al. Experimental and numerical study of the fatigue properties of corroded parallel wire cables[J]. Journal of Bridge Engineering, 2012, 17(2): 211-220. doi: 10.1061/(ASCE)BE.1943-5592.0000235
    [18] NAKAMURA S I, SUZUMURA K. Hydrogen embrittlement and corrosion fatigue of corroded bridge wires[J]. Journal of Constructional Steel Research, 2009, 65(2): 269-277. doi: 10.1016/j.jcsr.2008.03.022
    [19] LI Shun-long, XU Yang, ZHU Song-ye, et al. Probabilistic deterioration model of high-strength steel wires and its application to bridge cables[J]. Structure and Infrastructure Engineering, 2014, DOI: 10.1080/15732479.2014.948462.
    [20] CAO Y, VERMAAS G W, BETTI R, et al. Corrosion and degradation of high-strength steel bridge wire[J]. Corrosion, 2003, 59(6): 547-554. doi: 10.5006/1.3277586
    [21] YUAN Yang-guang, LIU Xiao-dong, PU Guang-ning, et al. Temporal and spatial variability of corrosion of high-strength steel wires within a bridge stay cable[J]. Construction and Building Materials, 2021, 308(2): 125108.
    [22] TORIBIO J, OVEJERO E. Effect of cold drawing on microstructure and corrosion performance of high-strength steel[J]. Mechanics of Time-Dependent Materials, 1997, 1(3): 307-319. doi: 10.1023/A:1009714222132
    [23] ELICES M. Influence of residual stresses in the performance of cold-drawn pearlitic wires[J]. Journal of Materials Science, 2004, 39(12): 3889-3899. doi: 10.1023/B:JMSC.0000031470.31354.b5
    [24] XU Jun, CHEN Wei-zhen. Behavior of wires in parallel wire stayed cable under general corrosion effects[J]. Journal of Constructional Steel Research, 2013, 85: 40-47. doi: 10.1016/j.jcsr.2013.02.010
    [25] LI Shun-long, XU Yang, LI Hui, et al. Uniform and pitting corrosion modeling for high-strength bridge wires[J]. Journal of Bridge Engineering, 2014, 19(7): 4014025. doi: 10.1061/(ASCE)BE.1943-5592.0000598
    [26] KARANCI E, BETTI R. Modeling corrosion in suspension bridge main cables. Ⅰ: annual corrosion rate[J]. Journal of Bridge Engineering, 2018, 23(6): 04018025. doi: 10.1061/(ASCE)BE.1943-5592.0001233
    [27] SUZUMURA K, NAKAMURA S I. Environmental factors affecting corrosion of galvanized steel wires[J]. Journal of Materials in Civil Engineering, 2004, 16(1): 1-7. doi: 10.1061/(ASCE)0899-1561(2004)16:1(1)
    [28] KARANCI E. Modeling corrosion in suspension bridge main cables[D]. New York: Columbia University, 2017.
    [29] LU Wen-gao, HE Zheng. Vulnerability and robustness of corroded large-span cable-stayed bridges under marine environment[J]. Journal of Performance of Constructed Facilities, 2016, 30(1): 04014204. doi: 10.1061/(ASCE)CF.1943-5509.0000727
    [30] NAKAMURA S I, FURUYA K, KITAGAWA M, et al. Corrosion performance of new suspension bridge cable protection[C]//IABSE. Proceedings of 16th Congress of IABSE. Lucerne: IABSE, 2000: 1-8.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  308
  • HTML全文浏览量:  55
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-13
  • 网络出版日期:  2024-03-13
  • 刊出日期:  2024-02-25

目录

    /

    返回文章
    返回