-
摘要:
为了提高斜拉索极限承载力评估的精度,考虑了斜拉索锈蚀损伤的影响,建立了锈蚀钢丝力学性能模型,模拟了完好与锈蚀钢丝的力学性能;以3种典型截面锈蚀分布模型模式和3种典型索长方向锈蚀分布模型类型的联合作用为前提,分析了斜拉索内不同位置处的锈蚀程度,研究了斜拉索的锈蚀分布规律;采用蒙特卡罗方法模拟了不同锈蚀程度下索内钢丝的力学性能,最终得到了索的极限承载力以及斜拉索达到极限承载力时的断丝数,统计分析了斜拉索极限承载力、断丝数、锈蚀深度以及截面锈蚀率之间的相关关系,分析了锈蚀分布规律的影响。分析结果表明:不同锈蚀分布条件下,锈蚀斜拉索达到极限承载力时的断丝数的样本均值相差可达到约3倍,而斜拉索极限承载力的样本均值变化可达到约20%;虽然锈蚀斜拉索达到极限承载力时的断丝数随着锈蚀程度增加而增加,但是断丝数与极限承载力间的相关性较差,在某些锈蚀分布条件下甚至仅为0.014;为了保证斜拉索的安全可靠性,不宜以断丝数作为评估索承载力的技术指标。
Abstract:In order to enhance the evaluation accuracy of the ultimate bearing capacity of stayed cables, the influence of corrosion damage on the stayed cables was considered, the mechanical property model of corroded steel wires was established, and the mechanical properties of intact and corroded steel wires were simulated. Based on the combined action of three typical cross-section corrosion distribution models, and three typical corrosion distribution model types along the cable length direction, the corrosion degrees at different positions in the stayed cable were analyzed, and the distribution law of the corrosion in the stayed cable was studied. The Monte Carlo method was used to simulate the mechanical properties of the steel wire in the cable under different corrosion degrees, and the ultimate bearing capacity of the cable was finally obtained, as well as the number of broken wires when the stayed cable reached the ultimate bearing capacity. The correlation among the ultimate bearing capacity, the number of broken wires, the corrosion depth, and the cross-section corrosion rate of the stayed cable was statistically analyzed. The influence of corrosion distribution law was analyzed. Analysis results show that under different corrosion distribution conditions, when the corroded stayed cable reaches the ultimate bearing capacity, the sample mean difference of the numbers of broken wires may reach about three times, while the sample mean change of the ultimate bearing capacity of the stayed cable can reach about 20%. When the stayed cable reaches the ultimate bearing capacity, the number of broken wires increases with the increase of corrosion degree. But the correlation between the number of broken wires and the ultimate bearing capacity is poor, even only 0.014 under some corrosion distribution conditions. In order to ensure the safety and reliability of the stayed cable, the number of broken wires should not be used as a technical index to evaluate the bearing capacity of cables.
-
表 1 钢丝力学性能统计参数
Table 1. Statistical parameters of mechanical properties of steel wires
参数 平均值 标准差 概率分布 σe/MPa 1 511.86 53.35 对数正态 εe/10-3 7.54 0.27 对数正态 σu/MPa 1 696.71 52.36 Weibull εu/10-3 64.69 6.73 对数正态 表 2 斜拉索锈蚀分布
Table 2. Corrosion distributions of stayed cables
截面锈蚀分布模型 索长方向锈蚀分布模型 dmax/mm 模式1 类型A 0.5 1.0 1.5 类型B 0.5 1.0 1.5 类型C 0.5 1.0 1.5 模式2 类型A 0.5 1.0 1.5 类型B 0.5 1.0 1.5 类型C 0.5 1.0 1.5 模式3 类型A 0.5 1.0 1.5 类型B 0.5 1.0 1.5 类型C 0.5 1.0 1.5 表 3 斜拉索2%断丝时达到极限承载力的概率
Table 3. Probabilities of reaching ultimate bearing capacity when 2% wires are broken in stayed cables
% 锈蚀类型 类型A 类型B 类型C dmax/mm 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 模式1 40.599 10.312 4.483 43.322 8.701 0.970 32.706 10.633 0.881 模式2 27.615 0.744 0.009 35.498 1.649 0.009 17.992 0.409 0.004 模式3 54.953 19.597 5.673 55.814 26.179 7.922 50.733 17.483 3.741 表 4 斜拉索截面锈蚀率
Table 4. Corrosion rates of stayed cable sections
dmax/mm 斜拉索截面锈蚀率Rmc 模式1 模式2 模式3 0.5 0.19 0.11 0.16 1.0 0.35 0.22 0.31 1.5 0.50 0.31 0.45 -
[1] ENGELUND S, FABER M. Planning of ultrasonic inspections of parallel wire cables[C]//ASCE. Proceedings of 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability. Reston: ASCE, 2000: 1-6. [2] FAN Bing-hui, SU Jia-zhan, CHEN Bao-chun. Condition evaluation for through and half-through arch bridges considering robustness of suspended deck systems[J]. Advances in Structural Engineering, 2020, 24(5): 962-976. [3] NI Yan-chun, ZHANG Qi-wei, XIN Rong-ya. Magnetic flux detection and identification of bridge cable metal area loss damage[J]. Measurement, 2021, 167(10): 108443. [4] SARCOS-PORTILLO A, NAVARRO-CERPA A, GARCIA-LEGL H. Inspection and process of tension of cables of General Rafael Urdaneta Bridge[J]. Journal of Bridge Engineering, 2003, 8(4): 223-228. doi: 10.1061/(ASCE)1084-0702(2003)8:4(223) [5] MATTEO J, DEODATIS G, BILLINGTON D P. Safety analysis of suspension-bridge cables: Williamsburg Bridge[J]. Journal of Structural Engineering, 1996, 120(11): 3197-3211. [6] STALLINGS J M, FRANK K H. Stay-cable fatigue behavior[J]. Journal of Structural Engineering, 1991, 117(3): 936-950. doi: 10.1061/(ASCE)0733-9445(1991)117:3(936) [7] FABER M H, ENGELUND S, RACKWITZ R. Aspects of parallel wire cable reliability[J]. Structural Safety, 2003, 25(2): 201-225. doi: 10.1016/S0167-4730(02)00057-7 [8] CAMO S. Probabilistic strength estimates and reliability of damaged parallel wire cables[J]. Journal of Bridge Engineering, 2003, 8(5): 297-311. doi: 10.1061/(ASCE)1084-0702(2003)8:5(297) [9] ELACHACHI S M, BREYSSE D, YOTTE S, et al. A probabilistic multi-scale time dependent model for corroded structural suspension cables[J]. Probabilistic Engineering Mechanics, 2006, 21(3): 235-245. doi: 10.1016/j.probengmech.2005.10.006 [10] LAN Cheng-ming, WU Jing-yu, BAI Na-ni, et al. Size effect on tensile strength of parallel CFRP wire stay cable[J]. Composite Structures, 2017, 181(2): 96-111. [11] KARANCI E, BETTI R. Modeling corrosion in suspension bridge main cables. Ⅱ: long-term corrosion and remaining strength[J]. Journal of Bridge Engineering, 2018, 23(6): 04018026. doi: 10.1061/(ASCE)BE.1943-5592.0001234 [12] LIU Zhong-xiang, GUO Tong, HAN Da-guang, et al. Experimental study on corrosion-fretting fatigue behavior of bridge cable wires[J]. Journal of Bridge Engineering, 2020, 25(12): 04020104. doi: 10.1061/(ASCE)BE.1943-5592.0001642 [13] TIAN Hao, WANG Ji-ji, CAO Su-gong, et al. Probabilistic assessment of the safety of main cables for long-span suspension bridges considering corrosion effects[J]. Advances in Civil Engineering, 2021, 4: 6627762. [14] LIU Xiao-dong, HAN Wan-shui, YUAN Yang-guang, et al. Corrosion fatigue assessment and reliability analysis of short suspender of suspension bridge depending on refined traffic and wind load condition[J]. Engineering Structures, 2021, 234: 111950. doi: 10.1016/j.engstruct.2021.111950 [15] HOPWOOD T, HAVENS J H. Inspection, prevention, and remedy of suspension bridge cable corrosion problems[R]. Lexington: Kentucky Transportation Research Program, 1984. [16] 潘骁宇, 谢旭, 李晓章, 等. 锈蚀高强度钢丝的力学性能与评级方法[J]. 浙江大学学报(工学版), 2014, 48(11): 1917-1924. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201411002.htmPAN Xiao-yu, XIE Xu, LI Xiao-zhang, et al. Mechanical properties and grading method of corroded high-tensile steel wires[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(11): 1917-1924. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201411002.htm [17] LI Hui, LAN Cheng-ming, JU Yang, et al. Experimental and numerical study of the fatigue properties of corroded parallel wire cables[J]. Journal of Bridge Engineering, 2012, 17(2): 211-220. doi: 10.1061/(ASCE)BE.1943-5592.0000235 [18] NAKAMURA S I, SUZUMURA K. Hydrogen embrittlement and corrosion fatigue of corroded bridge wires[J]. Journal of Constructional Steel Research, 2009, 65(2): 269-277. doi: 10.1016/j.jcsr.2008.03.022 [19] LI Shun-long, XU Yang, ZHU Song-ye, et al. Probabilistic deterioration model of high-strength steel wires and its application to bridge cables[J]. Structure and Infrastructure Engineering, 2014, DOI: 10.1080/15732479.2014.948462. [20] CAO Y, VERMAAS G W, BETTI R, et al. Corrosion and degradation of high-strength steel bridge wire[J]. Corrosion, 2003, 59(6): 547-554. doi: 10.5006/1.3277586 [21] YUAN Yang-guang, LIU Xiao-dong, PU Guang-ning, et al. Temporal and spatial variability of corrosion of high-strength steel wires within a bridge stay cable[J]. Construction and Building Materials, 2021, 308(2): 125108. [22] TORIBIO J, OVEJERO E. Effect of cold drawing on microstructure and corrosion performance of high-strength steel[J]. Mechanics of Time-Dependent Materials, 1997, 1(3): 307-319. doi: 10.1023/A:1009714222132 [23] ELICES M. Influence of residual stresses in the performance of cold-drawn pearlitic wires[J]. Journal of Materials Science, 2004, 39(12): 3889-3899. doi: 10.1023/B:JMSC.0000031470.31354.b5 [24] XU Jun, CHEN Wei-zhen. Behavior of wires in parallel wire stayed cable under general corrosion effects[J]. Journal of Constructional Steel Research, 2013, 85: 40-47. doi: 10.1016/j.jcsr.2013.02.010 [25] LI Shun-long, XU Yang, LI Hui, et al. Uniform and pitting corrosion modeling for high-strength bridge wires[J]. Journal of Bridge Engineering, 2014, 19(7): 4014025. doi: 10.1061/(ASCE)BE.1943-5592.0000598 [26] KARANCI E, BETTI R. Modeling corrosion in suspension bridge main cables. Ⅰ: annual corrosion rate[J]. Journal of Bridge Engineering, 2018, 23(6): 04018025. doi: 10.1061/(ASCE)BE.1943-5592.0001233 [27] SUZUMURA K, NAKAMURA S I. Environmental factors affecting corrosion of galvanized steel wires[J]. Journal of Materials in Civil Engineering, 2004, 16(1): 1-7. doi: 10.1061/(ASCE)0899-1561(2004)16:1(1) [28] KARANCI E. Modeling corrosion in suspension bridge main cables[D]. New York: Columbia University, 2017. [29] LU Wen-gao, HE Zheng. Vulnerability and robustness of corroded large-span cable-stayed bridges under marine environment[J]. Journal of Performance of Constructed Facilities, 2016, 30(1): 04014204. doi: 10.1061/(ASCE)CF.1943-5509.0000727 [30] NAKAMURA S I, FURUYA K, KITAGAWA M, et al. Corrosion performance of new suspension bridge cable protection[C]//IABSE. Proceedings of 16th Congress of IABSE. Lucerne: IABSE, 2000: 1-8.