留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

船舶碳捕集、利用与封存技术综述

卢明剑 董胜节 严新平 李珂 李晓东 周晓

卢明剑, 董胜节, 严新平, 李珂, 李晓东, 周晓. 船舶碳捕集、利用与封存技术综述[J]. 交通运输工程学报, 2024, 24(2): 1-19. doi: 10.19818/j.cnki.1671-1637.2024.02.001
引用本文: 卢明剑, 董胜节, 严新平, 李珂, 李晓东, 周晓. 船舶碳捕集、利用与封存技术综述[J]. 交通运输工程学报, 2024, 24(2): 1-19. doi: 10.19818/j.cnki.1671-1637.2024.02.001
LU Ming-jian, DONG Sheng-jie, YAN Xin-ping, LI Ke, LI Xiao-dong, ZHOU Xiao. Review on ship-based carbon capture, utilization and sequestration technology[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 1-19. doi: 10.19818/j.cnki.1671-1637.2024.02.001
Citation: LU Ming-jian, DONG Sheng-jie, YAN Xin-ping, LI Ke, LI Xiao-dong, ZHOU Xiao. Review on ship-based carbon capture, utilization and sequestration technology[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 1-19. doi: 10.19818/j.cnki.1671-1637.2024.02.001

船舶碳捕集、利用与封存技术综述

doi: 10.19818/j.cnki.1671-1637.2024.02.001
基金项目: 

中国工程院战略研究与咨询项目 2022-HYZD-07-02

国家自然科学基金项目 51920105014

详细信息
    作者简介:

    卢明剑(1987-),男,江苏宿迁人,武汉理工大学副研究员,工学博士,从事船舶新能源与节能减排研究

    通讯作者:

    严新平(1959-),男,江西莲花人,中国工程院院士,武汉理工大学教授,工学博士

  • 中图分类号: U664

Review on ship-based carbon capture, utilization and sequestration technology

Funds: 

Strategic Research and Consulting Project of Chinese Academy of Engineering 2022-HYZD-07-02

National Natural Science Foundation of China 51920105014

More Information
  • 摘要: 追踪了国内外围绕船舶碳捕集、利用与封存(CCUS)技术开展的研究,梳理了重点内容和主要研究成果;从CCUS不同技术路径的优缺点出发,分析了目前CCUS技术在船舶上的应用可行性;针对发展迅猛的液化天然气船舶,提出了开展CCUS的技术路线;总结了目前船舶CCUS技术存在的问题,针对性地提出了建议,并探讨了船舶CCUS关键技术的发展方向。研究结果表明:船舶CCUS技术可以在短期内显著减排,且适用于营运和新造在内的绝大多数含碳燃料船舶;国外正在积极部署船舶CCUS技术实船验证研究,但国内的研究多处于概念设计与仿真研究阶段;由于改造简单,技术成熟度高且成本低,燃烧后捕集法中的化学吸收法目前最适用于船舶碳捕集,但要解决能耗高和系统尺寸大等问题,需加快探索性能更优良的先进化学溶剂及更具革命性的捕集方法;液态存储是目前最成熟的存储方式,但还需要提升其安全性与经济性;亟需加快构建以大型CO2运输船为主的储运方式,推进港口与海洋平台CO2转驳、接收的基础设施建设;CO2在海洋油气田驱油驱气、淡化海水及能源催化重整等领域应用前景广阔,但船舶CO2利用技术亟待规模化、产业化和相关产业技术协同发展;将液态CO2或干冰进行海洋封存是未来的发展趋势,但亟需完善相关标准和法律法规,推动封存配套装备和技术开发;需要探索出一整套标准化、系统化的碳排放管理模式,推动CCUS技术配套发展,构建完整、绿色、经济、高效的船舶CCUS产业链。

     

  • 图  1  船舶碳捕集技术路线

    Figure  1.  Ship-based carbon capture technology route

    图  2  海德威船用CCUS系统

    Figure  2.  Headway marine CCUS system

    图  3  碳捕集路径

    Figure  3.  Carbon capture pathways

    图  4  碳捕集技术成熟度国内外对比

    Figure  4.  Comparison of maturities of domestic and foreign carbon capture technologies

    图  5  液态CO2技术路线的实用性优势

    Figure  5.  Practical advantages of liquid CO2 technology route

    图  6  CO2利用技术路线

    Figure  6.  CO2 utilization technology route

    图  7  海水淡化

    Figure  7.  Seawater desalination

    图  8  HyMethShip概念

    Figure  8.  Concept of HyMethShip

    图  9  苯乙烯氧化/CO2环加成

    Figure  9.  Styrene oxidation/CO2 cycloaddition

    图  10  穿甲弹状干冰制造模具

    Figure  10.  Armor-piercing bullet shaped dry ice manufacturing mold

    图  11  远洋船舶CCUS技术应用路线

    Figure  11.  Application pathway of CCUS technology in ocean-going ships

    表  1  国外主要船舶CCUS项目

    Table  1.   Major foreign ship-based CCUS projects

    年份 2010 2019 2020 2021 2021 2022
    项目名称 Eurostar Decarbon ICE Carbon Capture on the Ocean 乙烯船“Clipper Eos”号CCS系统改造安装 Filtree气体清洁系统 大宇造船LNG船舶碳捕集
    技术路线 化学吸收→液化存储→转运码头 低温处理→制流线型干冰→海洋封存 利用燃烧后捕集法,聚焦于捕集装置开发 化学吸收 模块捕集→CO2电池存储→岸上利用 化学吸收→CO2矿化→吸收溶剂再生循环利用
    减排效果(目标) CO2减排65% 减排90%以上 验证海上碳捕集系统紧凑性及稳定运行规格要求 深海船队零碳航行
    下载: 导出CSV

    表  2  三种碳捕集技术对比

    Table  2.   Comparison of three carbon capture technologies

    捕集方法及评价指标 燃烧前捕集 富氧燃烧 燃烧后捕集法
    改造量及投入成本 开发氢燃料发动机,增添反应罐等,投入成本大 改造发动机结构、系统及材料,投入成本大 仅改造发动机尾气处理系统,投入成本低
    安全及稳定性 系统复杂,可靠性低 涉及燃烧过程改造,存在高温危险性操作 对尾气进行处理,操作风险小
    下载: 导出CSV

    表  3  燃烧后碳捕集方法对比

    Table  3.   Comparison of post-combustion carbon capture methods

    捕集方法及评价指标 化学吸收法 物理吸附法 膜分离法 低温分离法
    技术制约 适合船舶尾气中低浓度CO2分离 选择性不高,分离效果差 不耐杂质,分离效果差 适用于高浓度CO2分离
    紧凑性 安装尺寸较大的吸收塔、再生塔及各种换热器等装置 变温吸附占地大,变压吸附受吸附床及压缩装置限制 占地小,紧凑性最好 压缩、制冷装置占地大
    每吨CO2捕集能耗/GJ 4.00~6.00 2.89~3.59 1.96~2.85 3.11
    每吨CO2捕集成本/美元 64.1~64.8 40.0~63.0 23.0 32.7
    下载: 导出CSV

    表  4  船舶CO2利用或封存技术优缺点

    Table  4.   Advantages and disadvantages of ship-based CO2 utilization or sequestration technology

    CO2存储、封存状态 利用或封存 接收或封存方式 优点 缺点
    液态存储 回收利用 专用CO2运输船、自身船舶运输到港口 液态制冷能耗低,所占船舶空间较小;CO2可以售卖给利用厂家,产生经济效益;资源循环利用,如制成CH3OH还可以回用于船舶燃料;泄露风险较小,对人和生态环境影响较小 国际航行船舶产生CO2量较大,需要占用载货体积;船上存储有安全隐患,需要专业的接收处置方式;IMO尚未有这方面的规则出台;港口或运输船接收资质要求、管理要求、收费机制等尚未明确;不一定所有港口都有接收处理能力
    液态封存 海洋封存 利用管道注入海洋 封存时间长,不占用船舶载货空间,不用建设专用的CO2运输船,不用港口建设专用接收设备及运输系统,对海洋环境及生物影响小 管道注入需要航行做停留,以避免管道断裂造成泄露;注入区域限制较多(温度和压力);管道注入方案从未在航行船舶上做过论证研究
    固态封存 固态抛投进入海洋 制成干冰需大量能耗;相关干冰制取方法不成熟,如气化制干冰CO2损失较多;IMO尚未出台关于允许干冰抛投区域、原则、评估等政策;抛投封存技术方案尚未成熟;不产生任何经济效益
    下载: 导出CSV
  • [1] 袁裕鹏, 王康豫, 尹奇志, 等. 船舶航速优化综述[J]. 交通运输工程学报, 2020, 20(6): 18-34. doi: 10.19818/j.cnki.1671-1637.2020.06.002

    YUAN Yu-peng, WANG Kang-yu, YIN Qi-zhi, et al. Review on ship speed optimization[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 18-34. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.002
    [2] 包甜甜, 连峰, 杨忠振. 航运管理研究综述[J]. 交通运输工程学报, 2020, 20(4): 55-69. doi: 10.19818/j.cnki.1671-1637.2020.04.004

    BAO Tian-tian, LIAN Feng, YANG Zhong-zhen. Research review of shipping management[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 55-69. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.004
    [3] 贺亚鹏, 严新平, 范爱龙, 等. 船舶智能能效管理技术发展现状及展望[J]. 哈尔滨工程大学学报, 2021, 42(3): 317-324. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202103002.htm

    HE Ya-peng, YAN Xin-ping, FAN Ai-long, et al. Development status and prospects of ship intelligent energy efficiency management technology[J]. Journal of Harbin Engineering University, 2021, 42(3): 317-324. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202103002.htm
    [4] 严新平, 贺亚鹏, 贺宜, 等. 水路交通技术发展趋势[J]. 交通运输工程学报, 2022, 22(4): 1-9. doi: 10.19818/j.cnki.1671-1637.2022.04.001

    YAN Xin-ping, HE Ya-peng, HE Yi, et al. Development trends of waterway transportation technology[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 1-9. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.04.001
    [5] Det Norske Veritas. Maritime Forecast to 2050[R]. Oslo: Det Norske Veritas, 2022.
    [6] FANG Si-dun, XU Yan, LI Zheng-hao, et al. Optimal sizing of shipboard carbon capture system for maritime greenhouse emission control[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 5543-5553. doi: 10.1109/TIA.2019.2934088
    [7] ROS J A, SKYLOGIANNI E, DOEDÉE V, et al. Advancements in ship-based carbon capture technology on board of LNG-fuelled ships[J]. International Journal of Greenhouse Gas Control, 2022, 114: 103575. doi: 10.1016/j.ijggc.2021.103575
    [8] GVLER E, ERGIN S. An investigation on the solvent based carbon capture and storage system by process modeling and comparisons with another carbon control methods for different ships[J]. International Journal of Greenhouse Gas Control, 2021, 110: 103438. doi: 10.1016/j.ijggc.2021.103438
    [9] WANG Hai-bin, ZHOU Pei-lin, WANG Zhong-cheng. Experimental and numerical analysis on impacts of significant factors on carbon dioxide absorption efficiency in the carbon solidification process[J]. Ocean Engineering, 2016, 113: 133-143. doi: 10.1016/j.oceaneng.2015.12.036
    [10] WANG Hai-bin, ZHOU Pei-lin, WANG Zhong-cheng. Reviews on current carbon emission reduction technologies and projects and their feasibilities on ships[J]. Journal of Marine Science and Application, 2017, 16(2): 129-136. doi: 10.1007/s11804-017-1413-y
    [11] STEC M, TATARCZUK A, ILUK T, et al. Reducing the energy efficiency design index for ships through a post-combustion carbon capture process[J]. International Journal of Greenhouse Gas Control, 2021, 108: 103333. doi: 10.1016/j.ijggc.2021.103333
    [12] OH J, ANANTHARAMAN R, ZAHID U, et al. Process design of onboard membrane carbon capture and liquefaction systems for LNG-fueled ships[J]. Separation and Purification Technology, 2022, 282: 120052. doi: 10.1016/j.seppur.2021.120052
    [13] GARCÍA-MARIACA A, LLERA-SASTRESA E. Review on carbon capture in ice driven transport[J]. Energies, 2021, 14(21): 6865. doi: 10.3390/en14216865
    [14] BUIRMA M, VLEUGEL J, PRUYN J, et al. Ship-based carbon capture and storage: a supply chain feasibility study[J]. Energies, 2022, 15(3): 813. doi: 10.3390/en15030813
    [15] WILLSON P M. Decarbonising the transport system—evaluation of the marine application of advanced carbon capture technology[R]. Chester: PMW Technology, 2020.
    [16] DAVISON J. Performance and costs of power plants with capture and storage of CO2[J]. Energy, 2007, 32(7): 1163-1176. doi: 10.1016/j.energy.2006.07.039
    [17] BLOMEN E, HENDRIKS C, NEELE F. Capture technologies: improvements and promising developments[J]. Energy Procedia, 2009, 1(1): 1505-1512. doi: 10.1016/j.egypro.2009.01.197
    [18] AWOYOMI A, PATCHIGOLLA K, ANTHONY E J. CO2/SO2 emission reduction in CO2 shipping infrastructure[J]. International Journal of Greenhouse Gas Control, 2019, 88: 57-70. doi: 10.1016/j.ijggc.2019.05.011
    [19] LONG N V D, LEE D Y, KWAG C, et al. Improvement of marine carbon capture onboard diesel fueled ships[J]. Chemical Engineering and Processing—Process Intensification, 2021, 168: 108535. doi: 10.1016/j.cep.2021.108535
    [20] VAN DEN AKKER J. Carbon capture onboard LNG-fueled vessels: a feasibility study[D]. Delft: Delft University of Technology, 2017.
    [21] AWOYOMI A, PATCHIGOLLA K, ANTHONY E J. Process and economic evaluation of an onboard capture system for LNG-fueled CO2 carriers[J]. Industrial and Engineering Chemistry Research, 2020, 59(15): 6951-6960. doi: 10.1021/acs.iecr.9b04659
    [22] LUO Xiao-bo, WANG Meng-hong. Study of solvent-based carbon capture for cargo ships through process modelling and simulation[J]. Applied Energy, 2017, 195(C): 402-413.
    [23] FEENSTRA M, MONTEIRO J, VAN DEN AKKER J T, et al. Ship-based carbon capture onboard of diesel or LNG-fuelled ships[J]. International Journal of Greenhouse Gas Control, 2019, 85: 1-10.
    [24] LEE S G, CHOI G B, YOON E S, et al. Modeling and simulation of ship transport of CO2[C]//KARIMI I A, SRINIVASAN R. Proceedings of the 11th International Symposium on Process Systems Engineering. Amsterdam: Elsevier, 2012, 31: 785-789.
    [25] SEO Y, CHANG D. Optimization of ship-based CCS[C]//IEEE. 2012 Oceans-Yeosu. New York: IEEE, 2012: 1-9.
    [26] SEO Y, LEE S-Y, KIM J, et al. Determination of optimal volume of temporary storage tanks in a ship-based carbon capture and storage (CCS) chain using life cycle cost (LCC) including unavailability cost[J]. International Journal of Greenhouse Gas Control, 2017, 64: 11-22.
    [27] ZHOU Pei-lin, WANG Hai-bin. Carbon capture and storage—solidification and storage of carbon dioxide captured on ships[J]. Ocean Engineering, 2014, 91: 172-180.
    [28] AL BAROUDI H A, AWOYOMI A, PATCHIGOLLA K, et al. A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage[J]. Applied Energy, 2021, 287: 116510.
    [29] The Naval Architect. Cryogenic technology project keeps its cool over carbon targets[EB/OL]. (2020-03-20)[2022-07-01]. https://rina.org.uk/news/cryogenic_technology_project_keeps_its_cool_over_carbon_targets-html/.
    [30] WARD J. DecarbonICE—creating a pathway to carbon negative shipping[EB/OL]. (2019-11-29) [2021-11-29]. https://fathom.world/decarbonicetm-creating-a-pathway-to-carbon-negative-shipping/.
    [31] Cero 2050. DecarbonICETM[EB/OL]. (2020-09-27)[2021-09-27]. https://cero2050.es/en/decarbonice/.
    [32] K Line. World's first small-scale CO2 capture plant on vessel "CC-Ocean" (carbon capture on the ocean) project[EB/OL]. (2020-8-31)[2021-09-27]. https://www.kline.com/news-and-press/2020/08/200831%20World%E2%80%99s%20First%20Small-scale%20CO2%20Capture%20Plant%20on%20Vessel%20~%E2%80%9CCC-Ocean%E2%80%9D%20(Carbon%20Capture%20on%20the%20Ocean)%20Project.pdf.
    [33] K Line. Carbon capture on the ocean project: the first ship in the world to conduct CO2 recovery experiments[EB/OL]. (2020-08-31)[2022-08-31].

    K Line. Carbon capture on the ocean project: the first ship in the world to conduct CO2 recovery experiments[EB/OL]. (2020-08-31)[2022-08-31].
    [34] SAMPSON J, OGC I. Stena bulk collaborate on mobile carbon capture in shipping[EB/OL]. (2020-08-16)[2022-08-31]. https://www.gasworld.com/ogci-stena-bulk-collaborate-on-mobile-carbon-capture-in-shipping/2019984.article.
    [35] Solvangship. Solvang signs deal to decarbonise fleet[EB/OL]. (2021-10-19)[2021-10-23]. https://solvangship.no/2021/10/19/solvang-signs-deal-to-decarbonise-fleet-2/.
    [36] The Maritime Executive. How much could carbon capture help shipowners meet CO2 targets? [EB/OL]. (2022-03-18) [2022-07-01]. https://www.maritime-executive.com/article/how-much-could-carbon-capture-help-shipowners-meet-co2-targets.
    [37] Global CCS Institute. State of the art: CCS technologies 2022[R]. Melbourne: Global CCS Institute, 2022.
    [38] Value Maritime. Value Maritime developed a "plug and play" filtree system[EB/OL]. (2021-09-19)[2022-09-19]. https://valuemaritime.com/services/.
    [39] Korea Economic Daily. DSME successfully validates CO2 capture and storage technology on a real ship[EB/OL]. (2022-10-06)[2023-10-07]. https://www.hankyung.com/article/202210068986P.
    [40] 汤旺杰, 李鹤鸣, 金华标. CCS技术在船舶上应用研究[J]. 内燃机, 2019(3): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJJ201903009.htm

    TANG Wang-jie, LI He-ming, JIN Hua-biao. Application research of CCS technology in ships[J]. Internal Combustion Engines, 2019(3): 21-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NRJJ201903009.htm
    [41] 孙化栋, 仝永臣, 李岩. CCUS技术在船舶上的应用进展研究[J]. 青岛远洋船员职业学院学报, 2021, 42(4): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-QDYY202104005.htm

    SUN Hua-dong, TONG Yong-chen, LI Yan. Research on the application of CCUS technology on ship[J]. Journal of Qingdao Ocean Shipping Mariners College, 2021, 42(4): 21-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDYY202104005.htm
    [42] 金鼎. CCUS技术在船上的应用前景[J]. 中国船检, 2021(2): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202102010.htm

    JIN Ding. Application prospect of CCUS technology in ships[J]. China Ship Survey, 2021(2): 24-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202102010.htm
    [43] 吴月辉, 刘诗瑶, 喻思南. 提升固碳能力, 实现双碳目标[N]. 人民日报, 2021-10-10(5).

    WU Yue-hui, LIU Shi-yao, YU Si-nan. Enhancing carbon sequestration capacity to achieve carbon peaking and carbon neutrality goals[N]. People's Daily, 2021-10-10(5). (in Chinese)
    [44] 李月清. 加速构建CCUS产业链和低碳循环体系[J]. 中国石油企业, 2022(3): 33-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQG202203012.htm

    LI Yue-qing. Accelerate the construction of CCUS industry chain and low carbon cycle system[J]. China Petroleum Enterprise, 2022(3): 33-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYQG202203012.htm
    [45] 王建生. 马玉璞代表: 加快发展海上碳捕集利用与封存[N]. 中国经济导报, 2022-03-08(9).

    WANG Jian-sheng. Representative MA Yu-pu: accelerate the development of offshore carbon capture and storage[N]. China Economic Herald, 2022-03-08(9). (in Chinese)
    [46] 张贤, 李阳, 马乔, 等. 我国碳捕集利用与封存技术发展研究[J]. 中国工程科学, 2021, 23(6): 70-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX202106008.htm

    ZHANG Xian, LI Yang, MA Qiao, et al. Development of carbon capture, utilization and storage technology in China[J]. Strategic Study of CAE, 2021, 231(6): 70-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX202106008.htm
    [47] 薛龙玉. CCUS如何改写航运脱碳[J]. 中国船检, 2022(5): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202205007.htm

    XUE Long-yu. How CCUS rewrites shipping decarbonization[J]. China Ship Survey, 2022(5): 16-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202205007.htm
    [48] 国际船舶网. 七一一所与山东海运签署船舶碳捕集装置合作协议[EB/OL]. (2021-08)[2021-08-11]. http://www.eworldship.com/html/2021/Manufacturer_0810/173694.html.

    Eworldship. Shanghai Marine Diesel Engine Research Institute and Shandong Shipping Corporation signed a cooperation agreement on ship carbon capture devices[EB/OL]. (2021-08-10)[2022-09-10]. http://www.eworldship.com/html/2021/Manufacturer_0810/173694.html. (in Chinese)
    [49] 中国船检. 中国船级社颁发全球首份船载二氧化碳捕获与存储系统原理性认可证书[J]. 中国船检, 2022(2): 1. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202202027.htm

    China Ship Survey. China Classification Society issued the world's first ship borne carbon dioxide capture and storage system principle approval certificate[J]. China Ship Survey, 2022(2): 1. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202202027.htm
    [50] 海德威科技集团(青岛)有限公司. 国内首家!海德威二氧化碳捕集与储存系统取得RINA原理认可[EB/OL]. (2022-07-29)[2022-08-10]. http://www.headwaytech.com/6735.html.

    Headway Technology Group (Qingdao) Co., Ltd. Headway clinched China's first RINA approval on CCS[EB/OL]. (2022-07-29)[2022-08-10]. http://www.headwaytech.com/6735. html. (in Chinese)
    [51] 海德威科技集团(青岛)有限公司. 行业领先!海德威碳捕获与封存系统(CCS)取得DNV船级社原理认可[EB/OL]. (2022-06-23). [2023-06-23]. http://www.headwaytech.com/6727.html.

    Headway Technology Group (Qingdao) Co., Ltd. Headway CCUS Obtained DNV Approval [EB/OL]. (2022-06-23)[2023-06-23]. http://www.headwaytech.com/6727.html. (in Chinese)
    [52] ZHANG Di, BUI M, FAJARDY M, et al. Unlocking the potential of BECCS with indigenous sources of biomass at a national scale[J]. Sustainable Energy and Fuels, 2020, 4(1): 226-253.
    [53] KUA H W, PEDAPATI C, LEE R V, et al. Effect of indoor contamination on carbon dioxide adsorption of wood-based biochar-lessons for direct air capture[J]. Journal of Cleaner Production, 2019, 210: 860-871.
    [54] GVR T M. Carbon dioxide emissions, capture, storage and utilization: review of materials, processes and technologies[J]. Progress in Energy and Combustion Science, 2022, 89: 100965.
    [55] 蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)——中国CCUS路径研究[R]. 北京: 生态环境部环境规划院, 2021.

    CAI Bo-feng, LI Qi, ZHANG Xian, et al. China carbon dioxide capture, utilization and storage (CCUS) annual report (2021)—research on China's CCUS pathway[R]. Beijing: Environmental Planning Institute of the Ministry of Ecological Environment, 2021. (in Chinese)
    [56] 刘易明, 王甫, 王珺, 等. 燃料电池船舶应用形式及其关键技术[J]. 船舶工程, 2021, 43(3): 18-26, 33. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202103004.htm

    LIU Yi-ming, WANG Fu, WANG Jun, et al. Application form and its key technology of fuel cell ship[J]. Ship Engineering, 2021, 43(3): 18-26, 33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202103004.htm
    [57] MADEJSKI P, CHMIEL K, SUBRAMANIAN N, et al. Methods and techniques for CO2 capture: review of potential solutions and applications in modern energy technologies[J]. Energies, 2022, 15(3): 887.
    [58] TILAK P, EL-HALWAGI M M. Process integration of calcium looping with industrial plants for monetizing CO2 into value-added products[J]. Carbon Resources Conversion, 2018, 1(2): 191-199.
    [59] KNAPIK E, KOSOWSKI P, STOPA J. Cryogenic liquefaction and separation of CO2 using nitrogen removal unit cold energy[J]. Chemical Engineering Research and Design, 2018, 131: 66-79.
    [60] ZHANG Zhi-en, WANG Tao, BLUNT M J, et al. Advances in carbon capture, utilization and storage[J]. Applied Energy, 2020, 278: 115627.
    [61] LIN Qing-yang, ZHANG Xiao, WANG Tao, et al. Technical perspective of carbon capture, utilization, and storage[J]. Engineering, 2022, 14: 27-32.
    [62] BERNHARDSEN I M, KNUUTILA H K. A review of potential amine solvents for CO2 absorption process: absorption capacity, cyclic capacity and pKa[J]. International Journal of Greenhouse Gas Control, 2017, 61: 27-48.
    [63] LIU Fei, QI Zhi-fu, FANG Meng-xiang, et al. Pilot test of water-lean solvent of 2-(ethylamino) ethanol, 1-methyl-2-pyrrolidinone, and water for post-combustion CO2 capture[J]. Chemical Engineering Journal, 2023, 459: 141634.
    [64] LIU Lian-bo, FAN Meng-xiang, XU Shi-sen, et al. Development and testing of a new post-combustion CO2 capture solvent in pilot and demonstration plant[J]. International Journal of Greenhouse Gas Control, 2022, 113: 103513.
    [65] 王立健, 曹林, 魏志威. 船舶碳捕集技术应用前景与展望[J]. 中国船检, 2020(11): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202011028.htm

    WANG Li-jian, CAO Lin, WEI Zhi-wei. Application prospect and prospect of ship carbon capture technology[J]. China Ship Survey, 2020(11): 66-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202011028.htm
    [66] PLAZA M G, RUBIERA F, PEVIDA C, et al. Evaluating the feasibility of a TSA process based on steam stripping in combination with structured carbon adsorbents to capture CO2 from a coal power plant[J]. Energy and Fuels, 2017, 31(9): 9760-9775.
    [67] HE Xue-zhong. Polyvinylamine-based facilitated transport membranes for post-combustion CO2 capture: challenges and perspectives from materials to processes[J]. Engineering, 2021, 7(1): 263-279.
    [68] YANG Wen-chao, LI Shu-hong, LI Xian-liang, et al. Analysis of a new liquefaction combined with desublimation system for CO2 separation based on N2/CO2 phase equilibrium[J]. Energies, 2015, 8(9): 9495-9508.
    [69] BOUNACEUR R, LAPE N, ROIZARD D, et al. Membrane processes for post-combustion carbon dioxide capture: a parametric study[J]. Energy, 2006, 31(14): 2556-2570.
    [70] DASHTI H, YEW L Z, LOU Xia. Recent advances in gas hydrate-based CO2 capture[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 195-207.
    [71] WANG M, LAWAL A, STEPHENSON P, et al. Post-combustion CO2 capture with chemical absorption: a state-of-the-art review[J]. Chemical Engineering Research and Design, 2011, 89(9): 1609-1624.
    [72] OCHEDI F O, YU Jiang-long, YU Hai, et al. Carbon dioxide capture using liquid absorption methods: a review[J]. Environmental Chemistry Letters, 2021, 19(1): 77-109.
    [73] MERKEL T C, LIN Hai-qing, WEI Xiao-tong, et al. Power plant post-combustion carbon dioxide capture: an opportunity for membranes[J]. Journal of Membrane Science, 2010, 359(1/2): 126-139.
    [74] AARON D, TSOURIS C. Separation of CO2 from flue gas: a review[J]. Separation Science and Technology, 2005, 40(1/2/3): 321-348.
    [75] JIANG Kai-qi, FERON P, COUSINS A, et al. Achieving zero/negative-emissions coal-fired power plants using amine-based postcombustion CO2 capture technology and biomass cocombustion[J]. Environmental Science and Technology, 2020, 54(4): 2429-2438.
    [76] SEO Y, CHANG D, JUNG J Y, et al. Economic evaluation of ship-based CCS with availability[J]. Energy Procedia, 2013, 37: 2511-2518.
    [77] SEO Y, HUH C, LEE S, et al. Comparison of CO2 liquefaction pressures for ship-based carbon capture and storage (CCS) chain[J]. International Journal of Greenhouse Gas Control, 2016, 52(2): 1-12.
    [78] SEO Y, YOU H, LEE S, et al. Evaluation of CO2 liquefaction processes for ship-based carbon capture and storage (CCS) in terms of life cycle cost (LCC) considering availability[J]. International Journal of Greenhouse Gas Control, 2015, 35: 1-12.
    [79] 赵芸. 碳封存, 催生二氧化碳运输船? [J]. 船舶经济贸易, 2021(9): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202404003.htm

    ZHAO Yun. Will carbon sequestration promote development of CO2 transport ships? [J]. Ship Economy and Trade, 2021(9): 16-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202404003.htm
    [80] RUBIN E, MEYER L, DE CONINCK H, et al. IPCC special report on carbon dioxide capture and storage[R]. New York: Intergovernmental Panel on Climate Change, 2005.
    [81] 宋欣珂, 张九天, 王灿. 碳捕集、利用与封存技术商业模式分析[J]. 中国环境管理, 2022, 14(1): 38-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHGL202201006.htm

    SONG Xin-ke, ZHANG Jiu-tian, WANG Can. Analysis of the business model for carbon capture, utilization and storage (CCUS) technologies[J]. Chinese Journal of Environmental Management, 2022, 14(1): 38-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHGL202201006.htm
    [82] CHAUVY R, DE WEIRELD G. CO2 utilization technologies in Europe: a short review[J]. Energy Technology, 2020, 8(12): 2000627.
    [83] CHAUVY R, MEUNIER N, THOMAS D, et al. Selecting emerging CO2 utilization products for short- to mid-term deployment[J]. Applied Energy, 2019, 236: 662-680.
    [84] AL-MAMOORI A, KRISHNAMURTHY A, ROWNAGHI A A, et al. Carbon capture and utilization update[J]. Energy Technology, 2017, 5(6): 834-849.
    [85] AYYAR A S R, AREGAWI D T, PETERSEN A R, et al. Carbon dioxide-mediated desalination[J]. Journal of the American Chemical Society, 2023, 145(6): 3499-3506.
    [86] MALMGREN E, BRYNOLF S, FRIDELL E, et al. The environmental performance of a fossil-free ship propulsion system with onboard carbon capture—a life cycle assessment of the HyMethShip concept[J]. Sustainable Energy and Fuels, 2021, 5(10): 2753-2770.
    [87] 赵博. 全球低碳船舶项目大盘点[J]. 中国船检, 2021(6): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202106008.htm

    ZHAO Bo. Global low-carbon ship project inventory[J]. China Ship Survey, 2021(6): 11-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202106008.htm
    [88] ILIUTA I, LARACHI F, FONTAINE F-G. Conversion of CO2 from the energy systems on-board ships via catalytic cycloaddition to styrene oxide: modeling and numerical simulation[J]. Industrial and Engineering Chemistry Research, 2022, 61(47): 17275-17296.
    [89] 王江海, 孙贤贤, 徐小明, 等. 海洋碳封存技术: 现状、问题与未来[J]. 地球科学进展, 2015, 30(1): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201501005.htm

    WANG Jiang-hai, SUN Xian-xian, XU Xiao-ming, et al. Marine carbon sequestration: current situation, problems and future[J]. Advances in Earth Science, 2015, 30(1): 17-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201501005.htm
    [90] VOORMEIJ D A, SIMANDL G. Geological, ocean, and mineral CO2 sequestration options: a technical review[J]. Geoscience Canada, 2004, 31(1): 11-22.
    [91] DAI Zhen-xue, ZHANG Ye, STAUFFER P, et al. Injectivity evaluation for offshore CO2 sequestration in marine sediments[J]. Energy Procedia, 2017, 114: 2921-2932.
    [92] NAKASHIKI N, OHSUMI T, SHITASHIMA T. Sequestering of CO2 in a deep-ocean—fall velocity and dissolution rate of solid CO2 in the ocean[R]. Chiba: Abiko Research Laboratory, 1991.
    [93] GUEVEL P, FRUMAN D H, MURRAY N. Conceptual design of an integrated solid CO2 penetrator marine disposal system[J]. Energy Conversion and Management, 1996, 37(6/7/8): 1053-1060.
    [94] 彭斯干. 海水式碳捕集封存方法及装置: 中国, 201710137942.8[P]. 2017-03-09.

    PENG Si-gan. Seawater type carbon capture and storage method and device: China, 201710137942.8[P]. 2017-03-09. (in Chinese)
    [95] 刘成波. 船舶碳捕集与封存技术的应用分析[J]. 船电技术, 2021, 41(10): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-CDJI202110002.htm

    LIU Cheng-bo. Application analysis of ship carbon capture and storage technology[J]. Marine Electric and Electronic Engineering, 2021, 41(10): 6-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CDJI202110002.htm
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  899
  • HTML全文浏览量:  286
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-20
  • 网络出版日期:  2024-05-16
  • 刊出日期:  2024-04-30

目录

    /

    返回文章
    返回