Evaluation of airport intelligence degree based on zero-subjective relative algorithm
-
摘要: 为了解决机场智慧化程度评价过程中遇到的指标类型繁多、覆盖范围广泛,且指标间关系错综复杂、量纲不统一、难以进行定量分析的难题,优选了传统的评价方法,并将改进后的优劣解距离(TOPSIS)法和层次分析法(AHP)进行融合,提出了专门针对机场智慧化程度评价的相对零主观(ZR)算法;为确保评价结果的准确,利用专家意见与客观判断结果对机场智慧化程度评价体系中的功能指标权重进行了计算,基于江苏省某机场通过ZR算法进行了机场智慧化程度评价。研究结果表明:2018年某机场智慧化程度评分为65.64,2022年某机场智慧化程度评分为77.08,说明机场内各项智慧智能设备在不断更新迭代,机场智慧化程度也在不断提高;2022年,机场应急保障下的二级安全运行监测指标较2018年提高了65.7%,人身安全检查指标提高了17.1%,应急与安全指标提高了16.2%,主要原因在于某机场近年来大力发展人工智能分析系统,引进了航站楼出入口人脸识别系统,完善了站坪作业安全监控平台,在一定程度上提高了机场安全的智慧化程度;陆侧交通指标2018年评分为2.34,2022年为2.54,评分变化较小,因此,智慧化程度发展迟缓,在未来的建设中需进一步加强资源投入。Abstract: To solve the issues such as various indicators, wide coverage, complex relationships among indicators, and non-uniform dimensions encountered in the evaluation process of airport intelligence degree, which make it difficult to conduct quantitative analysis, the traditional evaluation methods were optimized, and the improved technique for order preference by similarity to an ideal solution (TOPSIS) method was integrated with the analytic hierarchy process (AHP). Then, a zero-subjective relative (ZR) algorithm was proposed for the airport intelligence degree evaluation. To ensure the accuracy of the evaluation results, the weights of functional indicators in the airport intelligence evaluation system were calculated by using expert opinions and objective judgment results. At last, a case study of an airport in Jiangsu Province was given to evaluate the intelligence degree by using the ZR algorithm. Research results show that in 2018, the intelligence degree of the airport scores 65.64, and in 2022, the intelligence degree of the airport scores 77.08, indicating that various intelligent devices in the airport are constantly updated, and the intelligence degree of the airport improves constantly. The secondary security operation monitoring indicator under the airport emergency security improves by 65.7% in 2022 compared to 2018, the physical security screening indicator improves by 17.1%, and the emergency and security indicator improves by 16.2%. This can be explained by the fact that the airport vigorously developes the artificial intelligent analysis system in recent years, introduces the face recognition system at the terminal entrance and exit, and improves the station operation security monitoring platform. To a certain extent, it enhances the intelligence degree of airport security. The score of landside traffic indicator is 2.34 in 2018 and 2.54 in 2022, indicating no significant change, and the development of intelligence degree is slow. Therefore, resource investment should be strengthened in future construction.
-
表 1 常见评价方法优缺点对比
Table 1. Comparison of advantages and disadvantages of common evaluation methods
评价方法 优点 缺点 PCA法 可消除评估指标间的相关影响;可减少指标选择的工作量;可减少计算工作量 主成分空有信息量而无实际含义;主成分的解释模糊;综合评价函数意义不明确 AHP 可将研究对象系统性分析;可量化各因素对评价结果的影响 无法为决策者提供新的方案;定量数据较少,定性成分多;数据统计量大,且权重难以确定 GRA法 样本数量和规律不影响分析结果;计算量小且计算方便 部分指标最优值难以确定;仅适用于一般的抽象系统 TOPSIS法 可得到多个指标的综合影响力;对于数据形式无过多要求 指标量化选取有一定难度;需确定指标的选取个数;必须有2个以上的研究对象 表 2 权重的评分规则
Table 2. Scoring rules for weights
标度ak, l 含义 1 k和l的重要程度一致 3 k比l重要一点 5 k比l明显重要 7 k比l重要得多 9 k极其重要 2、4、6、8 上述评价中的中间值 倒数 若指标k和l的相对重要程度标度是ak, l,则指标l与k的相对重要程度标度是ak, l=1/ak, l 表 3 空中管理二级指标判断矩阵
Table 3. Judgement matrix for secondary indicators of air management
二级指标 信息集成系统 机场协同决策系统 地服系统 空侧运行管理平台 设备设施可视化BIM运维管理 信息集成系统 1 2 3 2 4 机场协同决策系统 1/2 1 2 1 1/2 地服系统 1/3 1 1 1 1/3 空侧运行管理平台 1/2 1 2 1 1/2 设备设施可视化建筑信息模型(Building Information Modeling, BIM) 运维管理 1/4 1/2 1/3 1/2 1 表 4 平均随机一致性指标的判定法则
Table 4. Rules for determining average stochastic consistency indicators
评价指标数 2 3 4 5 6 7 8 9 10 一致性指标 0.00 0.52 0.89 1.12 1.25 1.35 1.42 1.46 1.49 表 5 一级指标权重
Table 5. Weights of primary indicators
指标 应急保障 空中管理 旅客服务 陆侧交通管理 航空物流 运行管理 商业管理 飞行区管理 企业管理 权重 0.288 9 0.130 4 0.169 6 0.031 7 0.070 1 0.070 1 0.031 7 0.130 4 0.077 1 表 6 空中管理二级指标权重
Table 6. Weights of secondary indicators for air management
指标 信息集成 机场协同决策系统 地服系统 空侧运行管理平台 设备设施可视化BIM运维管理 权重 0.421 2 0.175 2 0.133 1 0.175 2 0.095 3 表 7 机场人工智能分析情况
Table 7. Artificial intelligent analysis of airport
评价对象 航站楼人脸识别率 视频服务流能力 特定人员查找时间/min 智能安全分析时间/min AI应用率 门禁通行一致性 某机场 0.94 150 14 13 0.82 1 理想机场 1.00 800 5 5 1.00 1 智慧化程度良好机场 0.97 500 9 9 0.92 1 智慧化程度较好机场 0.95 200 15 15 0.80 1 智慧化程度合格机场 0.92 100 20 20 0.30 0 表 8 2018年应急保障下属二级指标、三级指标分值
Table 8. Scores of secondary and tertiary indicators under emergency protection in 2018
指标 安全监控 人工智能分析 人车监控 身份识别 异常防爆 公共区运行监测 分值 60.42 45.11 43.76 85.76 42.07 94.35 指标 车辆及外来碎片监控 飞行区管控 应急联动 应急管理 预警平台 安保管理 分值 54.64 74.36 55.05 71.29 76.46 74.42 表 9 2018年陆侧交通管理下属二级指标、三级指标分值
Table 9. Scores of secondary and tertiary indicators under landside traffic management in 2018
指标 陆侧交通管理管理平台 停车管理系统 出租车管理系统 网约车管理系统 大巴管理系统 分值 84.75 41.06 60.00 100.00 50.16 表 10 2022年应急保障下属二级指标、三级指标分值
Table 10. Scores of secondary and tertiary indicators under emergency protection in 2022
指标 安全监控 人工智能分析 人车监控 身份识别 异常防爆 公共区运行监测 分值 72.51 98.31 81.89 85.76 78.90 94.90 指标 车辆及外来碎片监控 飞行区管控 应急联动 应急管理 预警平台 安保管理 分值 87.22 76.87 100.00 71.30 76.46 74.42 表 11 2022年陆侧交通管理下属二级指标、三级指标分值
Table 11. Scores of secondary and tertiary indicators under landside traffic management in 2022
指标 陆侧交通管理平台 停车管理系统 出租车管理系统 网约车管理系统 大巴管理系统 分值 84.76 54.71 60.00 100.00 86.96 表 12 2018与2022年智慧化程度分值对比
Table 12. Comparison of intelligence degree scores between 2018 and 2022
一级指标 一级指标分值(加权后) 二级指标 二级指标分值(加权后) 2018年 2022年 2018年 2022年 应急保障 18.94 22.71 安全运行监测 12.72 21.08 人身安全检查 8.86 10.38 公共区运行监测 6.11 6.15 飞行区运行监测 12.46 14.76 应急与安全 4.52 5.25 安保管理 4.82 4.82 信息网络安全 16.08 16.16 空中管理 9.96 10.73 信息集成 33.30 36.65 机场协同决策 13.64 14.80 地服平台 8.99 10.40 空侧运行管理平台 13.28 13.28 设备可视化BIM运维管理 7.15 7.15 旅客服务 12.07 13.25 全流程自助 24.50 31.50 旅服平台 10.19 10.19 智慧航显 10.19 10.19 差异化便捷安检 8.57 10.87 旅客分布识别系统 3.87 5.61 WiFi服务 7.19 8.15 行李流程追踪 34.97 34.97 行李处理 31.57 31.57 行李查询 13.78 13.78 陆侧交通管理 2.34 2.54 陆侧交通管理平台 42.38 42.38 停车管理 5.13 6.84 出租车管理 7.50 7.50 网约车管理 12.50 12.50 大巴管理 6.27 10.87 航空物流 4.44 4.53 货站管理 18.60 19.80 航空物监管平台 9.90 9.90 货检管理 7.71 8.48 无人驾驶 6.15 6.15 货运设备自动化 8.73 8.04 货运管理 12.22 12.22 运行管理 5.07 6.11 能源管理平台 17.34 20.92 电力监控 11.71 11.71 智能照明 10.17 10.17 楼宇管理 11.38 11.38 机房群控 6.15 6.15 不间断电源系统管理 6.24 6.24 噪声管理 0.00 0.00 新能源应用 9.32 20.56 商业管理 2.64 2.64 贵宾管理 49.99 49.99 商业租赁 16.67 16.67 广告管理 16.67 16.67 旅游管理 0.00 0.00 飞行区管理 8.15 10.77 机场地理信息 7.26 11.58 综合定位 5.77 5.77 综合通信 12.42 12.42 数据中心与总线 22.37 22.37 机房环境监控 7.50 7.50 云平台 7.21 22.93 企业管理 2.03 3.80 创新人才 10.57 10.57 创新项目 2.71 15.57 创新成果 10.61 18.05 新技术应用 2.44 5.05 -
[1] 何华武, 朱亮, 李平, 等. 智能高铁体系框架研究[J]. 中国铁路, 2019(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201903001.htmHE Hua-wu, ZHU Liang, LI Ping, et al. Study on the system framework of intelligent high speed railway[J]. China Railway, 2019(3): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201903001.htm [2] 李国锋. "共享"理念与人文机场建设[J]. 空运商务, 2021(6): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KYSW202106011.htmLI Guo-feng. The concept of "sharing" and the construction of humanistic airport[J]. Air Transport and Business, 2021(6): 31-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYSW202106011.htm [3] 王同琛, 王丽欣, 刘恒飞. 从北京大兴国际机场谈GIS的发展前景[J]. 测绘与空间地理信息, 2019, 42(12): 149-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201912044.htmWANG Tong-chen, WANG Li-xin, LIU Heng-fei. Talking about the development prospect of GIS from Beijing Daxing International Airport[J]. Geomatics and Spatial Information Technology, 2019, 42(12): 149-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201912044.htm [4] 刘成肖. 四型机场评价方法之探讨[J]. 中国设备工程, 2023(4): 249-251. doi: 10.3969/j.issn.1671-0711.2023.04.104LIU Cheng-xiao. Discussion on evaluation methods of four types of airports[J]. China Plant Engineering, 2023(4): 249-251. (in Chinese) doi: 10.3969/j.issn.1671-0711.2023.04.104 [5] 吴程程, 李彤阳, 张建. 中小机场推进四型机场建设探讨[J]. 民航管理, 2022(10): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-MHGL202210005.htmWU Cheng-cheng, LI Tong-yang, ZHANG Jian. Discussion on how to promote four characteristic airport construction at small and medium-sized airports[J]. Civil Aviation Management, 2022(10): 24-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MHGL202210005.htm [6] KHADONOV S V, UFIMTSEV A V, DYMKOVA S S. "Digital smart airport" system based on innovative navigation and information technologies[C]//IEEE. 2020 International Conference on Engineering Management of Communication and Technology (EMCTECH). New York: IEEE, 2020: 1-6. [7] LYKOU G, ANAGNOSTOPOULOU A, GRITZALIS D. Smart airport cybersecurity: threat mitigation and cyber resilience controls[J]. Sensors, 2018, 19(1): 19. doi: 10.3390/s19010019 [8] 高莹. DX机场航空物流信息服务平台评价研究[D]. 北京: 对外经济贸易大学, 2021.GAO Ying. Research on the evaluation of DX Airport logistics information service platform[D]. Beijing: University of International Business and Economics, 2021. (in Chinese) [9] 杨光. 基于数字化转型的A集团智慧机场建设研究[D]. 济南: 山东大学, 2023.YANG Guang. Research on thesmart airport construction of group A based on digital transformation[D]. Jinan: Shandong University, 2023. (in Chinese) [10] RAJAPAKSHA A, JAYASURIY N. Smart airport: a review on future of the airport operation[J]. Global Journal of Management and Business Research, 2020, 20(3): 25-34. [11] 赵鸿铎, 李琛琛, 刘诗福, 等. 机场智慧飞行区内涵、分级与评价[J]. 同济大学学报(自然科学版), 2019, 47(8): 1137-1142. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201908008.htmZHAO Hong-duo, LI Chen-chen, LIU Shi-fu, et al. Concept intelligence rating and evaluation of smart airfield in airport[J]. Journal of Tongji University (Natural Science), 2019, 47(8): 1137-1142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201908008.htm [12] MOHAMED M, GOMAA H, EL-SHERIF N. Evaluation of current smart airport technologies implemented in Cairo International Airport[J]. International Journal of Heritage, Tourism and Hospitality, 2018, 12(2): 130-140. [13] 金雷, 王银银, 傅惠, 等. 基于模糊层次分析法的机场陆侧智慧交通系统感知水平评价[J]. 科学技术与工程, 2022, 22(8): 3365-3372. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202208049.htmJIN Lei, WANG Yin-yin, FU Hui, et al. Perception level evaluation of airport land-side intelligent traffic system based on fuzzy analytic hierarchy process[J]. Science Technology and Engineering, 2022, 22(8): 3365-3372. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202208049.htm [14] SKORUPSKI J, UCHRO AN'G SKI P. A fuzzy reasoning system for evaluating the efficiency of cabin baggage screening at airports[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 157-175. [15] NAGY E, CSISZÁR C. Revealing influencing factors of check-in time in air transportation[J]. Acta Polytechnica Hungarica, 2017, 14(4): 225-243. [16] GÖÇMEN E. Smart airport: evaluation of performance standards and technologies for a smart logistics zone[J]. Transportation Research Record, 2021, 2675(7): 480-490. [17] 田佳. 新型智慧城市评价方法研究[D]. 南京: 东南大学, 2018.TIAN Jia. Study onevaluation method of new-type smart cities[D]. Nanjing: Southeast University, 2018. (in Chinese) [18] 田宝林, 刘长有. 基于区间数层次分析法的机场应急能力评价模型[J]. 中国安全科学学报, 2011, 21(3): 170-176. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201103031.htmTIAN Bao-lin, LIU Chang-you. Airport emergency capacity assessment model based on an interval-number analytic hierarchy process[J]. China Safety Science Journal, 2011, 21(3): 170-176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201103031.htm [19] 王红岩, 许雅玺. 基于层次分析法的机场服务质量评价[J]. 科技和产业, 2015, 15(6): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-CYYK201506013.htmWANG Hong-yan, XU Ya-xi. Airport service quality evaluation based on AHP model[J]. Science Technology and Industry, 2015, 15(6): 64-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CYYK201506013.htm [20] 柴琳果, 芮涛, 上官伟, 等. 基于二次诱导的群体空港旅客出行推荐方法[J]. 交通运输工程学报, 2023, 23(6): 301-313. doi: 10.19818/j.cnki.1671-1637.2023.06.020CHAI Lin-guo, RUI Tao, SHANGGUAN Wei, et al. Group airport passengers travel recommendation method based on secondary induction[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 301-313. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2023.06.020 [21] 陈正磊, 种小雷, 刘超佳, 等. 基于多智能体建模和蒙特卡洛仿真的跑道容量评估[J]. 交通运输工程学报, 2023, 23(6): 244-256. doi: 10.19818/j.cnki.1671-1637.2023.06.016CHEN Zheng-lei, CHONG Xiao-lei, LIU Chao-jia, et al. Runway capacity evaluation based on multi-agent modeling and Monte Carlo simulation[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 244-256. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2023.06.016 [22] WANG R T, HO C T, FENG C M, et al. A comparative analysis of the operational performance of Taiwan's major airports[J]. Journal of Air Transport Management, 2004, 10(5): 353-360. [23] 黄骏, 李永宾, 温玉涛. 基于GA-AHP算法的多目标威胁评估[J]. 空军工程大学学报, 2019, 20(5): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201905015.htmHUANG Jun, LI Yong-bin, WEN Yu-tao. Multi-target threat assessment based on GA-AHP algorithm[J]. Journal of Air Force Engineering University (Natural Science Edition), 2019, 20(5): 90-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201905015.htm [24] SHARMA A, CHAKI R, BHATTACHARYA U. Applications of wireless sensor network in intelligent traffic system: a review[C]//IEEE. 2011 3rd International Conference on Electronics Computer Technology. New York: IEEE, 2011, 53-57. [25] 刘玲. 基于TOPSIS思想的内容推荐算法研究[J]. 数学的实践与认识, 2012, 42(16): 113-119. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201216015.htmLIU Ling. Research on content-based recommendation based on the idea of TOPSIS[J]. Mathematics in Practice and Theory, 2012, 42(16): 113-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201216015.htm [26] 余朝军, 江驹, 徐海燕, 等. 基于改进遗传算法的航班-登机口分配多目标优化[J]. 交通运输工程学报, 2020, 20(2): 121-130. doi: 10.19818/j.cnki.1671-1637.2020.02.010YU Chao-jun, JIANG Ju, XU Hai-yan, et al. Multi- objective optimization of flight-gate assignment based on improved genetic algorithm[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 121-130. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.02.010 [27] SAATY T L. Decision making with the analytic hierarchy process[J]. International Journal of Services Sciences, 2008, 1(1): 83-98. [28] 李诚龙, 屈文秋, 李彦冬, 等. 面向eVTOL航空器的城市空中运输交通管理综述[J]. 交通运输工程学报, 2020, 20(4): 35-54. doi: 10.19818/j.cnki.1671-1637.2020.04.003LI Cheng-long, QU Wen-qiu, LI Yan-dong, et al. Overview of traffic management of urban air mobility (UAM) with eVTOL aircraft[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 35-54. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.003 [29] HOLDEN J, GOEL N. Fast-forwarding to a future of on- demand urban air transportation[R]. San Francisco: Uber Elevate, 2016. [30] 赵嶷飞, 肖瞳瞳, 万俊强. 中国民航空中交通管制体制演化[J]. 交通运输工程学报, 2020, 20(2): 100-120. doi: 10.19818/j.cnki.1671-1637.2020.02.009ZHAO Yi-fei, XIAO Tong-tong, WAN Jun-qiang. Evolution of air traffic control system of Chinese civil aviation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 100-120. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.02.009 [31] 柏强, 武帅, 曹蕊, 等. 民用机场乘客登机流程优化综述[J]. 交通运输工程学报, 2022, 22(4): 68-88. doi: 10.19818/j.cnki.1671-1637.2022.04.005BAI Qiang, WU Shuai, CAO Rui, et al. Review on passenger boarding process optimization at civil airports[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 68-88. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.04.005