-
摘要: 为提升干线道路整体的车流运行效率,建立了一种优化设置排阵式预信号的干线交通信号协调控制系统配时方案的双层模型,并提出对应求解算法;双层模型的上层模型为主信号间相位差优化模型,采用遍历搜索算法优化主信号各交叉口间的相位差;下层模型是以通过车辆数、车均延误为优化目标的多目标优化模型,建立了多目标花朵授粉算法(FPA)对其求解;双层模型中的交通参数通过冲击波建模进行关联,通过上下层模型的迭代求得参数的最优解;以设置排阵式预信号后3个连续交叉口为研究对象,应用提出模型优化高、低2种交通需求下的干线道路交通信号协调配时方案,通过SUMO软件测试所选方案的有效性。研究结果表明:该双层模型能够优化设置排阵式预信号的干线交通信号协调配时方案,与传统干线信号协调控制方案相比,提出方法的配时方案在高、低交通需求下系统通过车辆数可分别增加16%~35%与8%~17%,延误分别降低7%~17%与2%~16%;相较于粒子群优化(PSO)算法与二代非支配排序遗传算法(NSGA-Ⅱ),FPA达到指定精度要求的迭代次数分别减少13和24次。通过仿真结果可知,所提出模型可进一步提升高需求状况下道路的运行效率。Abstract: To improve the overall traffic flow efficiency, a bi-level model was established for optimizing the timing plans of arterial traffic signal coordinated control system with tandem pre-signals, and its solving algorithm was proposed. The upper-level model of the bi-level model was an optimization model of the offset between main signals, and the traversal search algorithm was employed to solve it between intersections. The lower-level model was a multi-objective optimization model, which selected the throughput vehicles and the average delay time as the optimization objectives. The flower pollination algorithm(FPA) was established to solve the proposed multi-objective optimization model. The traffic parameters in the bi-level model were connected by using the shockwave model. The optimal solutions of the parameters were obtained through the iterations between the upper-level and lower-level models. Three consecutive intersections after setting up tandem pre-signals were chosen to test. The proposed method was applied to optimize the traffic signal coordination timing plan on arterial roads under both high and low traffic demands. The effectiveness of the selected scheme was tested by software SUMO. Research results indicate that the bi-level model can optimize the arterial traffic signal coordination timing plan with tandem pre-signals. Compared with the traditional arterial signal coordinated control plan, the timing plans obtained from the proposed methods can increase the throughput vehicles through the system by 16%-35% and 8%-17%, respectively. Under high and low traffic demands, and the delays reduce by 7%-17% and 2%-16%, respectively. Compared to the particle swarm optimization (PSO) algorithm and non-dominated sorting genetic algorithm-Ⅱ (NSGA-Ⅱ), the FPA requires 13 and 24 fewer iterations to achieve the specified accuracy requirements, respectively. The simulation results indicate that the proposed model can further improve the operational efficiency of road under high demand conditions.
-
表 1 各进口道的交通流量
Table 1. Traffic flow at each entrance
进口道 流向 高(低)交通需求/(pcu·h-1)(按车道计) 交叉口1 交叉口2 交叉口3 东 左转 504(252) 548(274) 494(247) 直行 768(192) 742(371) 776(388) 右转 562(281) 484(242) 482(241) 西 左转 512(256) 532(266) 502(251) 直行 762(381) 826(413) 812(406) 右转 558(279) 478(239) 498(249) 南 左转 542(271) 562(281) 480(240) 直行 854(427) 842(421) 838(419) 右转 520(260) 538(269) 546(273) 北 左转 542(271) 562(281) 480(240) 直行 854(427) 842(421) 938(469) 右转 522(261) 538(269) 546(273) 表 2 各算法参数取值
Table 2. Parameter values of each algorithm
算法 参数名称 参数取值 PSO算法 惯性权重γ, 学习因子c1、c2, 粒子最大速度vmax γ=0.9, c1=c2=2, vmax=0.5 m·s-1 NSGA-Ⅱ 变异概率p1,交叉分布指数p2 p1=0.1,p2=1 FPA 转换概率p,伽马函数Γ(λ),控制步长比例因子μ p=0.8,λ=1.5,μ=1 -
[1] GULER S I, GAYAH V V, MENENDEZ M. Bus priority at signalized intersections with single-lane approaches: a novel pre-signal strategy[J]. Transportation Research Part C: Emerging Technologies, 2016, 63: 51-70. doi: 10.1016/j.trc.2015.12.005 [2] XUAN Yi-guang, GAYAH V V, CASSIDY M J, et al. Presignal used to increase bus-and car-carrying capacity at intersections[J]. Transportation Research Record, 2012, 2315(1): 191-196. doi: 10.3141/2315-20 [3] XUAN Yi-guang, DAGANZO C F, CASSIDY M J. Increasing the capacity of signalized intersections with separate left turn phases[J]. Transportation Research Part B: Methodological, 2011, 45(5): 769-781. doi: 10.1016/j.trb.2011.02.009 [4] MA Wan-jing, XIE Han-zhou, LIU Yue, et al. Coordinated optimization of signal timings for intersection approach with presignals[J]. Transportation Research Record, 2013, 2355(1): 93-104. doi: 10.3141/2355-10 [5] LI Yan, LI Ke, TAO Si-ran, et al. Optimization of the design of pre-signal system using improved cellular automaton[J]. Computational Intelligence and Neuroscience, 2014, 2014: 926371. [6] ZHOU Ya-ping, ZHUANG Hong-bin. The optimization of lane assignment and signal timing at the tandem intersection with pre-signal[J]. Journal of Advanced Transportation, 2014, 48(4): 362-376. doi: 10.1002/atr.1222 [7] 李瑞敏, 唐瑾. 过饱和交叉口交通信号控制动态规划优化模型[J]. 交通运输工程学报, 2015, 15(6): 101-109. doi: 10.19818/j.cnki.1671-1637.2015.06.013LI Rui-min, TANG Jin. Traffic signal control optimization model of over-saturated intersection based on dynamic programming[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 101-109. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2015.06.013 [8] 江欣国, 任瀚堃, 范英飞, 等. 信号协调控制干线交通安全仿真分析[J]. 中国安全科学学报, 2020, 30(3): 143-149. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202003024.htmJIANG Xin-guo, REN Han-kun, FAN Ying-fei, et al. Simulation analysis on traffic safety of signal-coordinated arteries[J]. China Safety Science Journal, 2020, 30(3): 143-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202003024.htm [9] 栗波, 别一鸣, 成卫. 基于车均延误的预信号交叉口信号配时优化[J]. 华南理工大学学报(自然科学版), 2018, 46(4): 35-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201804007.htmLI Bo, BIE Yi-ming, CHENG Wei. Signal timing optimization for the intersection with pre-signals based on average vehicle delay[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(4): 35-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201804007.htm [10] 安实, 宋浪, 王健, 等. 借用公交专用道左转的主预信号控制方案优化[J]. 中国公路学报, 2020, 33(4): 115-125. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202004012.htmAN Shi, SONG Lang, WANG Jian, et al. Main and pre-signal control scheme optimization of turning left by using bus lanes[J]. China Journal of Highway and Transport, 2020, 33(4): 115-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202004012.htm [11] LI Yan, NAN Si-rui, GONG Xiao-lin, et al. A geometric design method for intersections with pre-signal systems using a phase swap sorting strategy[J]. PLoS One, 2019, 14(5): e0217741. doi: 10.1371/journal.pone.0217741 [12] 曾佳棋, 王殿海. 双向干线协调控制的改进数解算法[J]. 浙江大学学报(工学版), 2020, 54(12): 2386-2394. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202012013.htmZENG Jia-qi, WANG Dian-hai. Improved numerical method for two-way arterial signal coordinate control[J]. Journal of Zhejiang University(Engineering Science), 2020, 54(12): 2386-2394. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202012013.htm [13] 王昊, 彭显玥. 临界饱和状态交通干线协调控制模型[J]. 中国公路学报, 2022, 35(7): 228-240. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202207019.htmWANG Hao, PENG Xian-yue. Signal coordination control model for near saturated arterial intersections[J]. China Journal of Highway and Transport, 2022, 35(7): 228-240. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202207019.htm [14] 王殿海, 杨希锐, 宋现敏. 交通信号干线协调控制经典数值计算法的改进[J]. 吉林大学学报(工学版), 2011, 41(1): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201101008.htmWANG Dian-hai, YANG Xi-rui, SONG Xian-min. Improvement of classical numerical method for arterial road signal coordinate control[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(1): 29-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201101008.htm [15] 蒋贤才, 金宇, 谢志云. 车联网环境下干线交通信号协调控制方法[J]. 哈尔滨工业大学学报, 2021, 53(3): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202103003.htmJIANG Xian-cai, JIN Yu, XIE Zhi-yun. Arterial coordinated signal control method under connected vehicle environment[J]. Journal of Harbin Institute of Technology, 2021, 53(3): 18-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202103003.htm [16] 杨晓芳, 李婷瑞. 考虑左转汇入的干线协调控制与速度引导优化[J]. 控制理论与应用, 2023, 40(9): 1595-1601. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY202309010.htmYANG Xiao-fang, LI Ting-rui. Optimization of arterials coordination control and speed guidance considering the convergence of left-turning vehicles[J]. Control Theory and Applications, 2023, 40(9): 1595-1601. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY202309010.htm [17] 卢凯, 张杰华, 邓兴栋, 等. 基于车速与信号协同优化的区域绿波协调控制模型[J]. 中国公路学报, 2021, 34(7): 31-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202107003.htmLU Kai, ZHANG Jie-hua, DENG Xing-dong, et al. Regional green wave coordinated control model based on cooperative optimization of vehicle speed and traffic signal[J]. China Journal of Highway and Transport, 2021, 34(7): 31-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202107003.htm [18] 马莹莹, 杨晓光, 曾滢. 信号控制交叉口周期时长多目标优化模型及求解[J]. 同济大学学报(自然科学版), 2009, 37(6): 761-765. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200906010.htmMA Ying-ying, YANG Xiao-guang, ZENG Ying. Multi-objective cycle length optimization model and solution[J]. Journal of Tongji University (Natural Science), 2009, 37(6): 761-765. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200906010.htm [19] 杨东霞, 巨永锋. 基于CTM的交通信号多目标优化方法[J]. 交通运输工程学报, 2011, 11(3): 105-111. doi: 10.19818/j.cnki.1671-1637.2011.03.018YANG Dong-xia, JU Yong-feng. Multi-objective optimization method of traffic signal based on CTM[J]. Journal of Traffic and Transportation Engineering, 2011, 11(3): 105-111. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2011.03.018 [20] 刘智敏, 叶宝林, 朱耀东, 等. 基于深度强化学习的交通信号控制方法[J]. 浙江大学学报(工学版), 2022, 56(6): 1249-1256. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202206024.htmLIU Zhi-min, YE Bao-lin, ZHU Yao-dong, et al. Traffic signal control method based on deep reinforcement learning[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(6): 1249-1256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202206024.htm [21] 尚春琳, 刘小明, 田玉林, 等. 基于深度强化学习的综合干线协调控制方法[J]. 交通运输系统工程与信息, 2021, 21(3): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103008.htmSHANG Chun-lin, LIU Xiao-ming, TIAN Yu-lin, et al. Priority of dedicated bus arterial control based on deep reinforcement learning[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 64-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103008.htm [22] YU Chao-dong, CHEN Jian, XIA Ge-ming. Coordinated control of intelligent fuzzy traffic signal based on edge computing distribution[J]. Sensors, 2022, 22(16): 5953. [23] ZHANG Zheng-hua, QIAN Jin, FANG Chong-xin, et al. Coordinated control of distributed traffic signal based on multiagent cooperative game[J]. Wireless Communications and Mobile Computing, 2021, 2021: 6693636. [24] 马东方, 陈曦, 吴晓东, 等. 基于强化学习的干线信号混合协同优化方法[J]. 交通运输系统工程与信息, 2022, 22(2): 145-153. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202202014.htmMA Dong-fang, CHEN Xi, WU Xiao-dong, et al. Mixed-coordinated decision-making method for arterial signals based on reinforcement learning[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(2): 145-153. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202202014.htm [25] 赵靖, 徐竞琪, 严佳超, 等. 考虑行程时间波动的干线信号协调控制鲁棒优化模型[J]. 铁道科学与工程学报, 2023, 20(4): 1261-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202304013.htmZHAO Jing, XU Jing-qi, YAN Jia-chao, et al. Robust optimization model for arterial signal coordination control considering travel time fluctuation[J]. Journal of Railway Science and Engineering, 2023, 20(4): 1261-1269. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202304013.htm [26] LEE J, KIM J, PARK B. A genetic algorithm-based procedure for determining optimal time-of-day break points for coordinated actuated traffic signal systems[J]. KSCE Journal of Civil Engineering, 2011, 15(1): 197-203. [27] CHAVIS C, CHRISTOFA E. A real-time signal control strategy for mitigating the impact of bus stops at urban signalized intersections[J]. Journal of Intelligent Transportation Systems, 2017, 21(5): 349-363. [28] QADRI S S S M, ALI GÖKÇE M, ÖNER E. State-of-art review of traffic signal control methods: challenges and opportunities[J]. European Transport Research Review, 2020, 12(1): 1-23. [29] WANG Pang-wei, JIANG Yi-lun, XIAO Lin, et al. A joint control model for connected vehicle platoon and arterial signal coordination[J]. Journal of Intelligent Transportation Systems, 2020, 24(1): 81-92. [30] LEITNER, D, MELEBY P, MIAO Lei. Recent advances in traffic signal performance evaluation[J]. Journal of Traffic and Transportation Engineering (English Edition), 2022, 9(4): 507-531.