Adhesion/cohesion failure behavior of porous asphalt concrete considering mortar random distribution
-
摘要: 为获得更加真实的多孔沥青混合料(PAC)黏附/黏聚失效行为,提出了一种考虑砂浆随机分布的细观有限元建模方法;基于X射线CT扫描和图像处理技术量化了PAC的真实细观结构和砂浆分布,研究了砂浆的随机分布特性;通过可精确控制砂浆厚度的拉拔试验评价了不同厚度砂浆的黏附/黏聚性能,确定了不同厚度砂浆对应的内聚力模型参数;在砂浆-集料边界和砂浆内部嵌入零厚度内聚力单元,并基于PAC内不同区域的砂浆厚度赋予该区域内聚力单元相应的模型参数,最终构建了考虑砂浆随机分布的细观有限元模型(模型A),研究了PAC黏附/黏聚失效行为的细观演化过程。研究结果表明:推荐将试件分割为36份用于表征砂浆的随机分布特性,砂浆厚度对其黏附/黏聚性能、失效模式以及内聚力模型参数具有显著影响,当砂浆厚度小于0.9 mm或在1.2~1.8 mm时为黏附失效,大于1.9 mm时为黏附-黏聚混合失效,其他厚度下为黏聚失效,且同一失效模式下,黏附/黏聚强度随着砂浆厚度的增大而增大;与不考虑砂浆随机分布的细观有限元模型(模型B)相比,模型A和B的起裂点均为黏附失效,但失效位置不同,模型B以单一的黏附失效为主,模型A表现出多种黏附/黏聚失效行为,与现场复杂的黏附/黏聚失效行为更加一致;砂浆的随机分布对PAC黏附/黏聚失效过程、应力分布、裂缝发展具有显著的影响,故考虑砂浆的随机分布能够更加准确地识别PAC黏附/黏聚失效的最不利位置,增大砂浆厚度能够延缓黏附/黏聚失效的扩展过程。Abstract: A meso-scale finite element modeling method for incorporating the random distribution of mortar was proposed to obtain a more realistic adhesion/cohesion failure behavior of porous asphalt concrete (PAC). The actual meso-structure and mortar distribution of PAC were quantified by using X-ray CT scanning and image processing technology, and the random distribution characteristics of mortar were evaluated. The adhesion/cohesion properties of mortars with different thicknesses were evaluated by pull-off test that can accurately control the thickness of mortar, and the cohesive zone model parameters corresponding to different thicknesses of mortar were determined. Zero-thickness cohesive elements were embedded at the mortar-aggregate interface and within the mortar, and corresponding model parameters were assigned to the cohesive elements based on the mortar thicknesses in different regions of PAC. Finally, a meso-scale finite element model considering mortar random distribution (Model A) was built to study the meso-scale evolution process of PAC adhesion/cohesion failure behaviors. Research results indicate that it is recommended to divide the specimens into 36 parts to characterize the random distribution characteristics of mortar. Mortar thickness has significant influences on PAC adhesion/cohesion properties, failure modes, and cohesive zone model parameters. Adhesion failure is observed when the mortar thickness is less than 0.9 mm or between 1.2-1.8 mm, while adhesion-cohesion mixed failure occurs when mortar thickness exceeds 1.9 mm, and other mortar thicknesses result in cohesion failure. Adhesion/cohesion strength increases with increasing mortar thickness in the same failure mode. Compared with the meso-scale finite element model without considering mortar random distribution (Model B), the crack initiation points of Model A and Model B are both adhesion failures, but failure locations are different. Model B primarily exhibits a single adhesion failure, while Model A demonstrates multiple adhesion/cohesion failure behaviors, which is more consistent with field complex adhesion/cohesion failure behaviors. The random distribution of mortar has significant influences on the adhesion/cohesion failure process, stress distribution, and crack propagation of PAC. Therefore, considering the random distribution of mortar can more accurately identify the weakest position of PAC adhesion/cohesion failure, and increasing the mortar thickness can delay the evolution of adhesion/cohesion failure.
-
表 1 PAC-13和砂浆的级配组成与集料比表面积
Table 1. Gradation compositions and aggregate specific surface areas of PAC-13 and mortar
集料粒径/mm 16.000 13.200 9.500 4.750 2.360 1.180 0.600 0.300 0.150 0.075 PAC-13级配通过率/% 100.0 95.3 61.6 23.3 16.3 13.2 10.7 8.8 7.4 5.4 砂浆级配通过率/% 100.0 100.0 100.0 100.0 100.0 100.0 81.1 66.7 56.1 40.9 集料比表面积系数 0.41 0.41 0.82 1.64 2.87 6.14 12.29 32.77 S1/ (m2·kg-1) 437.3 S2/(m2·kg-1) 351.6 表 2 不同厚度砂浆的黏附/黏聚强度和失效模式
Table 2. Adhesion/cohesion strengths and failure modes of different thickness mortar
砂浆厚度/mm 失效模式 开裂强度/MPa 0.4 黏附失效 1.30 0.9 黏附失效 1.81 1.0 黏聚失效 1.33 1.1 黏聚失效 1.90 1.2 黏附失效 1.00 1.3 黏附失效 1.06 1.4 黏附失效 1.14 1.5 黏附失效 1.17 1.6 黏附失效 1.22 1.7 黏附失效 1.24 1.8 黏附失效 1.27 1.9 混合失效 1.41 2.0 混合失效 1.45 表 3 不同厚度砂浆的内聚力单元参数
Table 3. Cohesive element parameters of mortar with different thicknesses
砂浆厚度/mm Tc/MPa K/(GPa·m-1) Gc/(J·mm-2) 0.4 1.30 1.42 0.32 0.9 1.81 1.43 0.45 1.0 1.33 1.02 0.47 1.1 1.90 1.80 0.48 1.2 1.00 0.83 0.39 1.3 1.06 0.92 0.42 1.4 1.14 0.95 0.47 1.5 1.17 0.97 0.49 1.6 1.22 0.98 0.55 1.7 1.24 0.99 0.61 1.8 1.27 0.99 0.64 1.9 1.41 1.10 0.75 2.0 1.45 1.11 0.83 -
[1] WANG Xiao-wei, GU Xing-yu, HU Xin-yu, et al. Three-stage evolution of air voids and deformation of porous-asphalt mixtures in high-temperature permanent deformation[J]. Journal of Materials in Civil Engineering, 2020, 32(9): 4020233. doi: 10.1061/(ASCE)MT.1943-5533.0003300 [2] WANG Xiao-wei, HU Xin-yu, GU Xing-yu, et al. Microstructure and damage evolution of porous asphalt mixtures under coupled effects of high temperature and moisture[J]. International Journal of Pavement Engineering, 2023, 24(1): 1-15. [3] CANESTRARI F, CARDONE F, GRAZIANI A, et al. Adhesive and cohesive properties of asphalt-aggregate systems subjected to moisture damage[J]. Road Materials and Pavement Design, 2010, 11(S1): 11-32. [4] LIU Ya-wen, APEAGYEI A, AHMAD N, et al. Examination of moisture sensitivity of aggregate-bitumen bonding strength using loose asphalt mixture and physico-chemical surface energy property tests[J]. International Journal of Pavement Engineering, 2014, 15(7): 657-670. doi: 10.1080/10298436.2013.855312 [5] 张恺, 罗蓉, 张德润. 基于表面自由能理论的彩色树脂类沥青材料润湿性分析[J]. 中国公路学报, 2016, 29(5): 34-40. doi: 10.3969/j.issn.1001-7372.2016.05.005ZHANG Kai, LUO Rong, ZHANG De-run. Wettability analysis on colored resin asphalt binder based on surface free energy theory[J]. China Journal of Highway and Transport, 2016, 29(5): 34-40. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.05.005 [6] 罗蓉, 郑松松, 张德润, 等. 基于表面能理论的沥青与集料黏附性能评价[J]. 中国公路学报, 2017, 30(6): 209-214. doi: 10.3969/j.issn.1001-7372.2017.06.003LUO Rong, ZHENG Song-song, ZHANG De-run, et al. Evaluation of adhesion property in asphalt-aggregate systems based on surface energy theory[J]. China Journal of Highway and Transport, 2017, 30(6): 209-214. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.06.003 [7] APEAGYEI A K, GRENFELL J R A, AIREY G D. Moisture-induced strength degradation of aggregate-asphalt mastic bonds[J]. Road Materials and Pavement Design, 2014, 15(S1): 239-262. [8] HUANG Wei-dong, LYU Quan, XIAO Fei-peng. Investigation of using binder bond strength test to evaluate adhesion and self-healing properties of modified asphalt binders[J]. Construction and Building Materials, 2016, 113: 49-56. doi: 10.1016/j.conbuildmat.2016.03.047 [9] CHATURABONG P, BAHIA H U. Effect of moisture on the cohesion of asphalt mastics and bonding with surface of aggregates[J]. Road Materials and Pavement Design, 2018, 19(3): 741-753. doi: 10.1080/14680629.2016.1267659 [10] ZHANG Heng-ji, LI Hui, ZHANG Yi, et al. Performance enhancement of porous asphalt pavement using red mud as alternative filler[J]. Construction and Building Materials, 2018, 160: 707-713. doi: 10.1016/j.conbuildmat.2017.11.105 [11] CAI Jun, WEN Yong, WANG Di, et al. Investigation on the cohesion and adhesion behavior of high-viscosity asphalt binders by bonding tensile testing apparatus[J]. Construction and Building Materials, 2020, 261: 120011. doi: 10.1016/j.conbuildmat.2020.120011 [12] WANG Xiao-wei, REN Jia-xing, GU Xing-yu, et al. Investigation of the adhesive and cohesive properties of asphalt, mastic, and mortar in porous asphalt mixtures[J]. Construction and Building Materials, 2021, 276: 122255. doi: 10.1016/j.conbuildmat.2021.122255 [13] 黄云涌, 刘朝晖, 李宇峙. 沥青混合料水稳性试验方法[J]. 交通运输工程学报, 2002, 2(2): 19-22. doi: 10.3321/j.issn:1671-1637.2002.02.005HUANG Yun-yong, LIU Zhao-hui, LI Yu-zhi. Method of asphalt mixture immersion stability test[J]. Journal of Traffic and Transportation Engineering, 2002, 2(2): 19-22. (in Chinese) doi: 10.3321/j.issn:1671-1637.2002.02.005 [14] ALVAREZ A E, EPPS-MARTIN A, ESTAKHRI C, et al. Evaluation of durability tests for permeable friction course mixtures[J]. International Journal of Pavement Engineering, 2010, 11(1): 49-60. doi: 10.1080/10298430902730539 [15] 严超, 魏显权, 方杨. 沥青混合料水稳定性能评价方法研究[J]. 公路, 2019, 64(10): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201910006.htmYAN Chao, WEI Xian-quan, FANG Yang. Study of evaluation methods for water stability performance of asphalt mixture[J]. Highway, 2019, 64(10): 29-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201910006.htm [16] 周璐, 黄卫东, 吕泉, 等. 不同改性剂对沥青黏结及抗水损害性能的影响[J]. 建筑材料学报, 2021, 24(2): 377-384. doi: 10.3969/j.issn.1007-9629.2021.02.021ZHOU Lu, HUANG Wei-dong, LYU Quan, et al. Effects of various modifiers on the bond property and moisture damage resistance of asphalt[J]. Journal of Building Materials, 2021, 24(2): 377-384. (in Chinese) doi: 10.3969/j.issn.1007-9629.2021.02.021 [17] XU Hui-ning, GUO Wei, TAN Yi-qiu. Internal structure evolution of asphalt mixtures during freeze-thaw cycles[J]. Materials and Design, 2015, 86: 436-446. doi: 10.1016/j.matdes.2015.07.073 [18] HU Xin-yu, WANG Xiao-wei, ZHENG Nan-xiang, et al. Experimental investigation of moisture sensitivity and damage evolution of porous asphalt mixtures[J]. Materials, 2021, 14(23): 7151. doi: 10.3390/ma14237151 [19] CUI Pei-de, WU Shao-peng, XIAO Yue, et al. 3D reconstruction of moisture damage resulted volumetric changes in porous asphalt mixture[J]. Construction and Building Materials, 2019, 228: 116658. doi: 10.1016/j.conbuildmat.2019.08.039 [20] OMRANIAN S R, HAMZAH M O, YEE T S, et al. Effects of short-term ageing scenarios on asphalt mixtures' fracture properties using imaging technique and response surface method[J]. International Journal of Pavement Engineering, 2020, 21(11): 1374-1392. doi: 10.1080/10298436.2018.1546007 [21] JIANG Ji-wang, LI Ying, ZHANG Yuan, et al. Distribution of mortar film thickness and its relationship to mixture cracking resistance[J]. International Journal of Pavement Engineering, 2022, 23(3): 824-833. doi: 10.1080/10298436.2020.1774767 [22] BARENBLATT G I. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks[J]. Journal of Applied Mathematics and Mechanics, 1959, 23(3): 622-636. doi: 10.1016/0021-8928(59)90157-1 [23] XU X P, NEEDLEMAN A. Numerical simulations of fast crack growth in brittle solids[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397-1434. doi: 10.1016/0022-5096(94)90003-5 [24] ESPINOSA H D, ZAVATTIERI P D. A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part Ⅰ: theory and numerical implementation[J]. Mechanics of Materials, 2003, 35(3/4/5/6): 333-364. [25] MO L T, HUURMAN M, WOLDEKIDAN M F, et al. Investigation into material optimization and development for improved ravelling resistant porous asphalt concrete[J]. Materials and Design, 2010, 31(7): 3194-3206. doi: 10.1016/j.matdes.2010.02.026 [26] HOSSAIN M I, TAREFDER R A. Quantifying moisture damage at mastic-aggregate interface[J]. International Journal of Pavement Engineering, 2014, 15(2): 174-189. doi: 10.1080/10298436.2013.812212 [27] WANG Hao, WANG Jian, CHEN Jia-qi. Micromechanical analysis of asphalt mixture fracture with adhesive and cohesive failure[J]. Engineering Fracture Mechanics, 2014, 132: 104-119. doi: 10.1016/j.engfracmech.2014.10.029 [28] FAN Ze-peng, DU Cong, LIU Peng-fei, et al. Study on interfacial debonding between bitumen and aggregate based on micromechanical damage model[J]. International Journal of Pavement Engineering, 2020, 23(2): 340-348. [29] BEKELE A, BALIEU R, JELAGIN D, et al. Micro-mechanical modelling of low temperature-induced micro-damage initiation in asphalt concrete based on cohesive zone model[J]. Construction and Building Materials, 2021, 286: 122971. doi: 10.1016/j.conbuildmat.2021.122971 [30] MANRIQUE-SANCHEZ L, CARO S, ARÁMBULA-MERCADO E. Numerical modelling of ravelling in porous friction courses (PFC)[J]. Road Materials and Pavement Design, 2018, 19(3): 668-689. doi: 10.1080/14680629.2016.1269661 [31] 郭志栋, 李得健, 陈维斌, 等. 基于细观孔隙结构的排水沥青混合料劈裂损伤分析[J]. 兰州工业学院学报, 2022, 29(2): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-LZGD202202004.htmGUO Zhi-dong, LI De-jian, CHEN Wei-bin, et al. Splitting damage analysis of drainage asphalt mixture based on micropore structure[J]. Journal of Lanzhou Institute of Technology, 2022, 29(2): 18-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LZGD202202004.htm [32] ZHANG Hao-peng, DING Hai-bo, RAHMAN A. Effect of asphalt mortar viscoelasticity on microstructural fracture behavior of asphalt mixture based on cohesive zone model[J]. Journal of Materials in Civil Engineering, 2022, 34(7): 0004277. [33] 赵晓康, 董侨, 肖源杰, 等. 基于细观非均质模型的水稳碎石基层材料疲劳开裂研究[J]. 中南大学学报(自然科学版), 2021, 52(9): 3132-3142. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202109015.htmZHAO Xiao-kang, DONG Qiao, XIAO Yuan-jie, et al. Fatigue cracking of cement-eated composites with mesoscale heterogeneous model[J]. Journal of Central South University (Science and Technology), 2021, 52(9): 3132-3142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202109015.htm [34] WANG Ya-bo, ZHANG Hai-tao, ZHAO Qi. Micro-structural analysis on stress displacement and crack evolution of porous asphalt mixture based on DEM[J]. Materials Research Express, 2021, 8(6): 065102. [35] KOSE S, GULER M, BAHIA H U, et al. Distribution of strains within hot-mix asphalt binders: applying imaging and finite-element techniques[J]. Transportation Research Record, 2000, 1728(1): 21-27. [36] SEDGHI R, REZAEI LORI A, BOKAEI A, et al. Evaluating the bond strength and work of fracture of bituminous mastic using the taguchi method[J]. International Journal of Pavement Engineering, 2021, 22(10): 1318-1333. [37] SONG S H, PAULINO G H, BUTTLAR W G. A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material[J]. Engineering Fracture Mechanics, 2006, 73(18): 2829-2848. [38] SCHULTZ R A. Brittle strength of basaltic rock masses with applications to Venus[J]. Journal of Geophysical Research: Planets, 1993, 98(E6): 10883-10895. [39] ROQUE R, KOH C, CHEN Y, et al. Introduction of fracture resistance to the design and evaluation of open graded friction courses in Florida[R]. Tallahassee: Florida Department of Transportation, 2009. [40] MO Lian-tong, HUURMAN M, WU Shao-peng, et al. Ravelling investigation of porous asphalt concrete based on fatigue characteristics of bitumen-stone adhesion and mortar[J]. Materials and Design, 2009, 30(1): 170-179.