Mechanical properties of composite improved phyllite soil under uniaxial compression
-
摘要: 针对千枚岩土作为路基填料强度不足的问题,提出一种水泥与红黏土联合改良千枚岩土的方法,通过无侧限抗压强度试验,研究了水泥与红黏土复合改良千枚岩土浸水与不浸水试样的应力-应变曲线,分析了无侧限抗压强度与变形模量随红黏土掺和比与水泥掺量的变化趋势。试验结果表明:随着红黏土掺和比的增大,当水泥掺量为0时,红黏土改良千枚岩土的应力-应变曲线为典型的弹塑性特征,而当水泥掺量不为0时,复合改良土的应力-应变曲线近似表现为线弹性特征,红黏土改良千枚岩土与复合改良土的无侧限抗压强度与变形模量均增大;在浸水条件下,红黏土改良千枚岩土试样发生崩解导致无侧限抗压强度和变形模量降低至0,复合改良土无侧限抗压强度和变形模量减小,水泥掺量分别为3%与5%时,软化系数分别为0.45~0.62与0.71~0.93,因此,复合改良土水稳性更优;水泥与红黏土复合改良千枚岩土时,无侧限抗压强度增加幅度大于水泥与红黏土单独改良增幅之和,实现了“1+1>2”的改良效果,即协同作用,因此,宜采用复合改良方案改良千枚岩土;水泥掺量为3%与红黏土掺和比为20%可以作为满足规范350 kPa强度要求的经济复合改良方案,为了增强水稳定性、快速填筑和协同作用的充分发挥,可以考虑水泥掺量为5%与红黏土掺和比为40%的复合改良方案。Abstract: To address the issue of insufficient strength of phyllite soil as a subgrade filler, a composite improvement method using cement and red clay to improve phyllite soil was proposed. Through unconfined compressive strength tests, the stress-strain curves of composite improved phyllite soil under soaked and unsoaked conditions were studied, and the variations of unconfined compressive strength and deformation modulus with red clay mixing ratio and cement content were analyzed. Experimental results show that with the increase of red clay mixing ratio, the stress-strain curve of red clay modified phyllite soil exhibits typical elastoplastic characteristic when cement content is 0. When cement content is not 0, the stress-strain curve of composite improved phyllite soil approximates linear elastic characteristic, and the uniaxial compressive strengths and deformation moduli of red clay modified phyllite soil and composite improved phyllite soil increase. Under soaked condition, red clay modified phyllite soil disintegrates to result in a reduction of unconfined compressive strength and deformation modulus to 0. For composite improved phyllite soil, the unconfined compressive strength and deformation modulus decrease, with softening coefficients of 0.45-0.62 and 0.71-0.93 for cement contents of 3% and 5%, respectively, showing better water stability. When phyllite soil is improved by using cement and red clay, the increase in uniaxial compressive strength is better than the sum of the increments achieved by using cement and red clay alone, realizing an improvement effect of "1+1>2", that is, synergy. Therefore, it is advisable to adopt the composite improvement scheme to improve phyllite soil. Cement content of 3% and red clay mixing ratio of 20% can be used as an economic composite improvement scheme to meet the strength requirement of 350 kPa. In order to enhance water stability, rapid filling and full play of synergy, the composite improvement scheme of cement content of 5% and red clay mixing ratio of 40% can be considered.
-
表 1 试验材料物理指标
Table 1. Physical indices of test materials
土类 液限/ % 塑限/ % 塑性指数 最大干密度/ (g·cm-3) 最优含水率/ % 土粒比重 红黏土 48.4 26.4 22.0 1.75 17.81 2.69 千枚岩土 43.3 28.9 14.4 1.64 19.32 2.76 -
[1] LIU Guang-jin, PENG Ya-xiong, ZUO Qing-jun, et al. Dynamic mechanics and energy dissipation of saturated layered phyllite[J]. Minerals, 2022, 12(10): 1246. doi: 10.3390/min12101246 [2] ALMOGAIT E, ALMUQRIN A H, ALHAMMAD N, et al. T hermoluminescence sensitization of phyllite natural rock[J]. Applied Sciences, 2022, 12(2): 637. doi: 10.3390/app12020637 [3] 刘莉, 张芹, 颜荣涛, 等. 千枚岩全风化土的抗拉特性研究[J]. 工业建筑, 2022, 52(12): 166-170. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ202212025.htmLIU Li, ZHANG Qin, YAN Rong-tao, et al. Tensile characteristics of fully weathered phyllite soil[J]. Industrial Construction, 2022, 52(12): 166-170. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ202212025.htm [4] WANG J D, GU T F, ZHANG M S, et al. Experimental study of loess disintegration characteristics[J]. Earth Surface Processes and Landforms, 2019, 44(6): 1317-1329. doi: 10.1002/esp.4575 [5] LI Yu-ting, ZHANG Yong-fa, BI Jing, et al. Influences of calcium and magnesium sources on microbially modified strongly weathered phyllite filler[J]. Construction and Building Materials, 2024, 416: 135118. doi: 10.1016/j.conbuildmat.2024.135118 [6] GU Jian-xiao, LYU Hai-bo, FAN Li-yun. Influence of structural strength on geotechnical properties of intact red clay[J]. Arabian Journal of Geosciences, 2021, 14(18): 1921. doi: 10.1007/s12517-021-08322-6 [7] CHEN Li-jie, CHEN Xue-jun, WANG He, et al. Mechanical properties and microstructure of lime-treated red clay[J]. KSCE Journal of Civil Engineering, 2021, 25(1): 70-77. doi: 10.1007/s12205-020-0497-0 [8] CHEN Kai-sheng, WANG Qin-qin, LUO Di-pu, et al. Study on dynamic characteristics of rubber-red clay mixtures[J]. Advances in Materials Science and Engineering, 2020, 2020: 2343242. [9] PHAM T M, CHEN Wen-su, KHAN A M, et al. Dynamic compressive properties of lightweight rubberized concrete[J]. Construction and Building Materials, 2020, 238: 117705. doi: 10.1016/j.conbuildmat.2019.117705 [10] LIU Yang, CHEN Kai-sheng, LYU Meng-fei, et al. Study on failure of red clay slopes with different gradients under dry and wet cycles[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(9): 4609-4624. doi: 10.1007/s10064-020-01827-6 [11] BEKHITI M, TROUZINE H, RABEHI M. Influence of waste tire rubber fibers on swelling behavior, unconfined compressive strength and ductility of cement stabilized bentonite clay soil[J]. Construction and Building Materials, 2019, 208: 304-313. doi: 10.1016/j.conbuildmat.2019.03.011 [12] ADEBOJE A O, KUPOLATI W K, SADIKU E R, et al. Experimental investigation of modified bentonite clay-crumb rubber concrete[J]. Construction and Building Materials, 2020, 233: 117187. doi: 10.1016/j.conbuildmat.2019.117187 [13] 赵秀绍, 赵林浩, 王梓尧, 等. 全风化千枚岩复合改良土路用性能[J]. 交通运输工程学报, 2021, 21(6): 147-159. doi: 10.19818/j.cnki.1671-1637.2021.06.011ZHAO Xiu-shao, ZHAO Lin-hao, WANG Zi-yao, et al. Road properties of completely weathered phyllite composite improved soil[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 147-159. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.06.011 [14] WANG Jia-ding, GU Tian-feng, ZHANG Mao-sheng, et al. Experimental study of loess disintegration characteristics[J]. Earth Surface Processes and Landforms, 2019, 44(6): 1317-1329. doi: 10.1002/esp.4575 [15] ZHAO Xiu-shao, FU Zhi-tao, YANG Qi-jing, et al. Study on bearing capacity performance and influence factors of phyllite soil blended with red clay[J]. Journal of Physics: Conference Series, 2020, 1637(1): 012033. doi: 10.1088/1742-6596/1637/1/012033 [16] ZHAO Yu, LI Yang, BI Jing, et al. Triaxial compression experiment and damage constitutive model of microbially modified strongly weathered phyllite[J]. Construction and Building Materials, 2023, 393: 131962. doi: 10.1016/j.conbuildmat.2023.131962 [17] 汤连生, 许瀚升, 刘其鑫, 等. 改良花岗岩残积土崩解特性试验研究[J]. 中国公路学报, 2022, 35(10): 75-87. doi: 10.3969/j.issn.1001-7372.2022.10.008TANG Lian-sheng, XU Han-sheng, LIU Qi-xin, et al. Experimental study on disintegration characteristics of improved granite residual soil[J]. China Journal of Highway and Transport, 2022, 35(10): 75-87. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.10.008 [18] SUN Yin-lei, LIU Qi-xin, XU Han-sheng, et al. Influences of different modifiers on the disintegration of improved granite residual soil under wet and dry cycles[J]. International Journal of Mining Science and Technology, 2022, 32(4): 831-845. doi: 10.1016/j.ijmst.2022.05.003 [19] ZHOU Yang, SU Sheng-rui, LI Peng. Mechanical behavior, energy release, and crack distribution characteristics of water-saturated phyllite under triaxial cyclic loading[J]. Advances in Civil Engineering, 2021, 2021: 3681439. [20] BIE P F, LIU H X. Influence of stress amplitude on the dynamic characteristics of phyllite samples under triaxial multi-stage cyclic loading[J]. IOP Conference Series: Earth and Environmental Science, 2020, 570(3): 032043. doi: 10.1088/1755-1315/570/3/032043 [21] WU Ren-jie, LI Hai-bo, LI Xiao-feng, et al. Experimental study and numerical simulation of the dynamic behavior of transversely isotropic phyllite[J]. International Journal of Geomechanics, 2020, 20(8): 04020105. doi: 10.1061/(ASCE)GM.1943-5622.0001737 [22] WU R J, LI H B, WANG D P. Full-field deformation measurements from Brazilian disc tests on anisotropic phyllite under impact loads[J]. International Journal of Impact Engineering, 2021, 149: 103790. doi: 10.1016/j.ijimpeng.2020.103790 [23] ABDEL-GAWWAD H A, RASHAD A M, MOHAMMED M S, et al. The potential application of cement kiln dust-red clay brick waste-silica fume composites as unfired building bricks with outstanding properties and high ability to CO2-capture[J]. Journal of Building Engineering, 2021, 42: 102479. doi: 10.1016/j.jobe.2021.102479 [24] 蔡国庆, 韩博文, 王亚南, 等. 双孔结构非饱和红黏土土水特征曲线模型[J]. 岩土工程学报, 2022, 44(增刊1): 1-5. doi: 10.11779/CJGE2022S1001CAI Guo-qing, HAN Bo-wen, WANG Ya-nan, et al. SWCC model for double-pore structured unsaturated clay[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 1-5. (in Chinese) doi: 10.11779/CJGE2022S1001 [25] 路林海, 武朝军, 孙捷城, 等. 强竖向渗透济南红黏土的微观孔隙特征及CT渗流试验[J]. 上海交通大学学报, 2022, 56(9): 1218-1226. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT202209012.htmLU Lin-hai, WU Chao-jun, SUN Jie-cheng, et al. Micropore characteristics and CT seepage test of Jinan red clay with a strong vertical permeability[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1218-1226. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT202209012.htm [26] LIAN Bao-qin, WANG Xin-gang, LIU Kai, et al. A mechanical insight into the triggering mechanism of frequently occurred landslides along the contact between loess and red clay[J]. Scientific Reports, 2021, 11(1): 17556. doi: 10.1038/s41598-021-96384-7 [27] 张文博, 柏巍, 孔令伟, 等. 淋溶时间对红黏土物理力学特性的影响[J]. 岩土力学, 2022, 43(2): 443-452. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202202016.htmZHANG Wen-bo, BAI Wei, KONG Ling-wei, et al. Effect of leaching time on physical and mechanical characteristics of lateritic soil[J]. Rock and Soil Mechanics, 2022, 43(2): 443-452. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202202016.htm [28] ZHAO Xiu-shao, FU Zhi-tao, YANG Qi-jing, et al. Subgrade fill strength and bearing characteristics of weathered phyllite blended with red clay[J]. Road Materials and Pavement Design, 2021, 22(11): 2571-2590. doi: 10.1080/14680629.2020.1773906 [29] 赵秀绍, 付智涛, 耿大新, 等. 千枚岩土-红黏土混合土抗剪强度试验研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(8): 120-126. doi: 10.3969/j.issn.1674-0696.2022.08.17ZHAO Xiu-shao, FU Zhi-tao, GENG Da-xin, et al. Experimental study on shear strength of phyllite soil-red clay mixed soil[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(8): 120-126. (in Chinese) doi: 10.3969/j.issn.1674-0696.2022.08.17 [30] 王志良, 陈玉龙, 申林方, 等. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 141-147. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202408017.htmWANG Zhi-liang, CHEN Yu-long, SHEN Lin-fang, et al. Improvement mechanism of metakaolin-based geopolymer on cement stabilized red clay[J]. Materials Reports, 2024, 38(8): 141-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202408017.htm [31] ZHANG Y Z, ZUO S Y, LI R Y M, et al. Experimental study on the mechanical properties of Guiyang red clay considering the meso micro damage mechanism and stress path[J]. Scientific Reports, 2020, 10: 17449. doi: 10.1038/s41598-020-72465-x [32] 周平锋, 王伟. 不同养护温度下尾砂胶结充填体抗压强度及破坏形态的试验研究[J]. 有色金属工程, 2022, 12(8): 167-176. doi: 10.3969/j.issn.2095-1744.2022.08.022ZHOU Ping-feng, WANG Wei. Experimental study on compressive strength and failure mode of cemented tailings backfill at different curing temperatures[J]. Nonferrous Metals Engineering, 2022, 12(8): 167-176. (in Chinese) doi: 10.3969/j.issn.2095-1744.2022.08.022