留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

盐湖区高速铁路长短桩复合地基变形特性

杨晓华 王东清 张莎莎 孔祥鑫 李安洪 赵彦虎

杨晓华, 王东清, 张莎莎, 孔祥鑫, 李安洪, 赵彦虎. 盐湖区高速铁路长短桩复合地基变形特性[J]. 交通运输工程学报, 2024, 24(3): 181-192. doi: 10.19818/j.cnki.1671-1637.2024.03.012
引用本文: 杨晓华, 王东清, 张莎莎, 孔祥鑫, 李安洪, 赵彦虎. 盐湖区高速铁路长短桩复合地基变形特性[J]. 交通运输工程学报, 2024, 24(3): 181-192. doi: 10.19818/j.cnki.1671-1637.2024.03.012
YANG Xiao-hua, WANG Dong-qing, ZHANG Sha-sha, KONG Xiang-xin, LI An-hong, ZHAO Yan-hu. Deformation characteristics of long-short pile composite foundation for high-speed railway in salt lake region[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 181-192. doi: 10.19818/j.cnki.1671-1637.2024.03.012
Citation: YANG Xiao-hua, WANG Dong-qing, ZHANG Sha-sha, KONG Xiang-xin, LI An-hong, ZHAO Yan-hu. Deformation characteristics of long-short pile composite foundation for high-speed railway in salt lake region[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 181-192. doi: 10.19818/j.cnki.1671-1637.2024.03.012

盐湖区高速铁路长短桩复合地基变形特性

doi: 10.19818/j.cnki.1671-1637.2024.03.012
基金项目: 

国家自然科学基金项目 42101126

陕西省自然科学基础研究计划 2019JM-147

中国中铁股份有限公司科技研究开发计划 2017-major-11-04

详细信息
    作者简介:

    杨晓华(1961-),男,河北唐山人,长安大学教授,工学博士,从事岩土与隧道工程研究

  • 中图分类号: U213.15

Deformation characteristics of long-short pile composite foundation for high-speed railway in salt lake region

Funds: 

National Natural Science Foundation of China 42101126

Natural Science Basic Research Plan in Shaanxi Province of China 2019JM-147

Science and Technology Development Project of China Railway Group Limited 2017-major-11-04

More Information
  • 摘要: 依托伊朗德黑兰至伊斯法罕高速铁路项目,开展全长桩(混凝土桩)、全短桩(碎石桩)和长短桩(混凝土桩-碎石桩)复合地基离心模型试验,模拟了填筑与工后2年的地基沉降过程,研究了桩长比、桩间距、短桩布置形式与填土高度对地基沉降特性的影响。研究结果表明:在相同地质条件下,全长桩、长短桩和全短桩复合地基的桩间土工后沉降分别为28.16、36.17和53.95 mm,分别减小了70%、60%和40%以上,因此,全长桩和长短桩复合地基工后沉降可以满足规范要求(不超过于50 mm),长短桩复合地基工后沉降介于全长桩和全短桩复合地基工后沉降之间;桩长比每增加0.1,桩间距分别为3、4倍桩径时长短桩复合地基沉降分别减小7%~12%和8%左右,表明提高桩长比能够显著改善复合地基的沉降控制效果,并随桩间距的增大而更为有效;桩间距从3倍桩径增大到5倍桩径,桩长比为0.5时复合地基沉降从36.56 mm增至55.71 mm,桩长比为0.7时复合地基沉降从28.38 mm增至45.93 mm,表明在较大桩间距下沉降控制效果较差,为使沉降满足规范要求,桩间距为5倍桩径时桩长比应不小于0.5;桩长比为0.7时,一长一短、一长两短和一长三短3种布置形式复合地基沉降分别为28.37、38.06和43.69 mm,表明在相邻两长桩之间布置更多短桩可以兼顾沉降控制与经济性,短桩布置越多,长桩应力越大,但应力整体趋势保持不变;不同填土高度下长短桩复合地基中碎石桩块体以向下运动为主,长桩刺入垫层,短桩刺入软土,并在剪切变形与块体侧向挤出的作用下形成局部潜在滑移面。

     

  • 图  1  盐湖地质

    Figure  1.  Salt lake geology

    图  2  试验设备

    Figure  2.  Test equipments

    图  3  试验模型(单位:mm)

    Figure  3.  Test model (unit: mm)

    图  4  地基模型

    Figure  4.  Foundation models

    图  5  复合地基累计沉降曲线

    Figure  5.  Cumulative settlement curves of composite foundations

    图  6  复合地基桩土应力比

    Figure  6.  Pile-soil stress ratios in composite foundations

    图  7  复合地基模型与接触面类型

    Figure  7.  Composite foundation model and contact surface types

    图  8  离心模型试验数据与数值计算结果对比

    Figure  8.  Comparison of centrifugal model test data and numerical calculation results

    图  9  短桩桩长对复合地基沉降的影响

    Figure  9.  Influence of short pile length on settlements of composite foundations

    图  10  桩长比对长桩应力的影响

    Figure  10.  Influence of pile length ratio on long pile stress

    图  11  桩间距对复合地基沉降的影响

    Figure  11.  Influence of pile spacing on settlements of composite foundations

    图  12  桩间距对长桩应力的影响

    Figure  12.  Influence of pile spacing on long pile stress

    图  13  短桩布置形式

    Figure  13.  Arrangements of short piles

    图  14  不同短桩布置形式的复合地基沉降

    Figure  14.  Settlements of composite foundations with different short piles arrangements

    图  15  不同短桩布置形式的长桩应力

    Figure  15.  Long pile stresses under different short piles arrangements

    图  16  连续-非连续计算模型

    Figure  16.  Continuous-discontinuous calculation model

    图  17  不同填土高度复合地基沉降

    Figure  17.  Settlements of composite foundations with different filling heights

    图  18  填土高度为3.5和5.0 m复合地基剪应变增量

    Figure  18.  Shear strain increments of composite foundations with filling heights of 3.5 and 5.0 m

    表  1  盐湖区地基土物理力学参数

    Table  1.   Physical and mechanical parameters of foundation soils in salt lake region

    断面土层 天然密度/(g·cm-3 ) 黏聚力/kPa 内摩擦角/(°) 压缩模量/MPa 压缩系数 泊松比
    盐渍化松软土 1.60 13 15 3 0.46 0.33
    盐渍化黏土 1.70 28 23 8 0.19 0.33
    下载: 导出CSV

    表  2  模型地基土物理力学参数

    Table  2.   Physical and mechanical parameters of model foundation soils

    断面土层 含水率/% 密度/(g·cm-3 ) 黏聚力/kPa 内摩擦角/(°)
    盐渍化松软土 24.2 1.61 11.5 14.4
    盐渍化黏土 8.6 1.78 20.1 23.6
    下载: 导出CSV

    表  3  离心模型试验物理量的相似比

    Table  3.   Similarity ratios of physical quantities in centrifugal model tests

    物理量 相似比 物理量 相似比
    长度 1/n 弹性模量 1
    重度 n 加速度 n
    黏聚力 1 应力 1
    内摩擦角 1 位移 1/n
    下载: 导出CSV

    表  4  离心模型试验加速方案

    Table  4.   Acceleration scheme in centrifugal model tests

    试验阶段 填土高度/m 加速度/g 模型历时/min 原型历时/d
    模型预压 10.0 5.0 1
    填土过程 2 29.1 51.2 30
    4 60.5 11.8 30
    5 80.0 6.8 30
    工后1年 5 80.0 82.2 365
    工后2年 5 80.0 82.2 365
    下载: 导出CSV

    表  5  地基处理方案

    Table  5.   Foundation treatment schemes

    复合地基形式 长度/m 尺寸/m 桩间距/m 置换率 布桩形式
    全长桩复合地基 22 0.45×0.45 1.35 0.088
    全短桩复合地基 11 0.50 1.35 0.088
    长短桩复合地基 长桩 22 0.45×0.45 1.35 0.044
    短桩 11 0.50 0.044
    下载: 导出CSV

    表  6  地基结构的数值计算参数

    Table  6.   Numerical calculation parameters of foundation structures

    地基结构 天然密度/(g·cm-3 ) 黏聚力/kPa 内摩擦角/(°) 泊松比 压缩模量/MPa 弹性模/MPa 渗透系数/(m·s-1)
    垫层 2.1 5 30 0.33 30 1.2×10-4
    路堤填方 2.1 15 27 0.33 25
    盐渍化松软土 1.6 13 15 0.33 3 2.7×10-7
    盐渍化黏土 1.7 28 23 0.33 8 4.3×10-7
    预制桩 2.1 0.20 3.5×104
    碎石桩 2.0 0 38 0.25 70.0 1.7×10-3
    下载: 导出CSV

    表  7  碎石桩参数

    Table  7.   Parameters of gravel pile

    接触杨氏模量/GPa 接触刚度比 接触摩擦因数 密实度 块体重度/(kN·m-3)
    2.0 2.0 0.55 0.8 25
    下载: 导出CSV
  • [1] MOAYED R Z, IZADI E, HEIDARI S. Stabilization of saline silty sand using lime and micro silica[J]. Journal of Central South University, 2012, 19(10): 3006-3011. doi: 10.1007/s11771-012-1370-1
    [2] AL-AMOUDI O S B, ABDULJAUWAD S N. Compressibility and collapse characteristics of arid saline sabkha soils[J]. Engineering Geology, 1995, 39(3): 185-202.
    [3] WAN Xu-sheng, LIAO Meng-ke, DU Li-qun. Experimental study on the influence of temperature on salt expansion of sodium sulfate saline soil[J]. Journal of Highway and Transportation Research and Development, 2017, 11(3): 1-7.
    [4] ZHANG Jun, WENG Xing-zhong, QU Bo, et al. Failure modes and mechanisms of pavements in saline foundations[J]. Proceedings of the Institution of Civil Engineers-Transport, 2018, 171(3): 174-182. doi: 10.1680/jtran.17.00049
    [5] 杨晓华, 张莎莎, 刘伟, 等. 粗颗粒盐渍土工程特性研究进展[J]. 交通运输工程学报, 2020, 20(5): 22-40. doi: 10.19818/j.cnki.1671-1637.2020.05.002

    YANG Xiao-hua, ZHANG Sha-sha, LIU Wei, et al. Research progress on engineering properties of coarse-grained saline soil[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 22-40. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.002
    [6] 付强, 刘汉龙, 庄妍, 等. 高速铁路CFG桩筏复合地基沉降变形特性研究[J]. 铁道科学与工程学报, 2014, 11(6): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201406009.htm

    FU Qiang, LIU Han-long, ZHUANG Yan, et al. Analysis of settlement characteristic of CFG piled raft composite foundation in high-speed railway[J]. Journal of Railway Science and Engineering, 2014, 11(6): 45-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201406009.htm
    [7] ZHANG Ding-bang, ZHANG Yi, KIM Chul-woo, et al. Effectiveness of CFG pile-slab structure on soft soil for supporting high-speed railway embankment[J]. Soils and Foundations, 2018, 58(6): 1458-1475. doi: 10.1016/j.sandf.2018.08.007
    [8] 李波, 冷景岩. 高速铁路CFG桩-筏结构沉降控制现场试验[J]. 铁道工程学报, 2014, 31(2): 48-52. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201402011.htm

    LI Bo, LENG Jing-yan. Research on settlement control effect of CFG pile-raft structure based on field test of high-speed railway[J]. Journal of Railway Engineering Society, 2014, 31(2): 48-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201402011.htm
    [9] 陈建峰, 李良勇, 徐超, 等. 套筒长度对加筋碎石桩复合地基路堤变形和稳定性的影响[J]. 中南大学学报(自然科学版), 2019, 50(7): 1662-1669. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201907020.htm

    CHEN Jian-feng, LI Liang-yong, XU Chao, et al. Influence of encasement length on deformation and stability of embankments on composite foundation reinforced with geosynthetic-encased stone columns[J]. Journal of Central South University (Science and Technology), 2019, 50(7): 1662-1669. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201907020.htm
    [10] 蒋鹏程. 粉土地基CFG桩与螺杆桩复合地基承载特性对比分析[J]. 铁道学报, 2019, 41(4): 125-132. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201904018.htm

    JIANG Peng-cheng. Comparative analysis on bearing behaviors of CFG pile and screw pile composite foundation in silt foundation[J]. Journal of the China Railway Society, 2019, 41(4): 125-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201904018.htm
    [11] 黄俊杰, 王薇, 苏谦, 等. 素混凝土桩复合地基支承路堤变形破坏模式[J]. 岩土力学, 2018, 39(5): 1653-1661. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805014.htm

    HUANG Jun-jie, WANG Wei, SU Qian, et al. Deformation and failure modes of embankments on soft ground reinforced by plain concrete piles[J]. Rock and Soil Mechanics, 2018, 39(5): 1653-1661. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805014.htm
    [12] 黄龙, 王炳龙, 周顺华. 软土地基桩板结构路基离心模型试验研究[J]. 岩土力学, 2013, 34(增1): 192-196. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S1030.htm

    HUANG Long, WANG Bing-long, ZHOU Shun-hua. Centrifugal model test of pile-plank subgrade in soft ground[J]. Rock and Soil Mechanics, 2013, 34(S1): 192-196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S1030.htm
    [13] 岳浩淼, 黄建明, 文桃, 等. 换填覆重法处理砂类硫酸盐渍土地基的室内模拟试验[J]. 岩土力学, 2017, 38(2): 471-478, 486. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702022.htm

    YUE Hao-miao, HUANG Jian-ming, WEN Tao, et al. Experimental study of foundation treatment of sulphate saline sandy soil using heavy cover replacement technique[J]. Rock and Soil Mechanics, 2017, 38(2): 471-478, 486. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702022.htm
    [14] 张彧, 房建宏, 刘建坤, 等. 强夯置换复合地基加固盐渍土效果的试验研究[J]. 岩土工程学报, 2011, 33(增1): 251-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S1049.htm

    ZHANG Yu, FANG Jian-hong, LIU Jian-kun, et al. Field tests on reinforcement effects of ground treatment of composite foundation in saline soils by dynamic compaction replacement[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 251-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S1049.htm
    [15] 陈耀光, 杨军, 彭芝平, 等. 饱和盐渍土地基处理孔隙水压力实测分析[J]. 岩土工程学报, 2010, 32(增2): 529-532. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2130.htm

    CHEN Yao-guang, YANG Jun, PENG Zhi-ping, et al. Test analysis on pore water pressure in ground treatment to saturated saline soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 529-532. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2130.htm
    [16] 彭芝平, 杨军, 陈耀光, 等. 饱和盐渍土碎石排水桩加强夯试验研究[J]. 岩土工程学报, 2010, 32(增2): 136-141. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2035.htm

    PENG Zhi-ping, YANG Jun, CHEN Yao-guang, et al. Experimental study on ground improvement of saturated saline soil with dynamic consolidation and drainage stone columns[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 136-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2035.htm
    [17] 黄晓波, 周立新, 何淑军, 等. 浸水预溶强夯法处理盐渍土地基试验研究[J]. 岩土力学, 2006, 27(11): 2080-2084. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200611047.htm

    HUANG Xiao-bo, ZHOU Li-xin, HE Shu-jun, et al. Study on test of saline soil ground treatment with the soaking and dissolving combined dynamic compaction method[J]. Rock and Soil Mechanics, 2006, 27(11): 2080-2084. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200611047.htm
    [18] 张彧, 刘建坤, 房建宏, 等. 察尔汗地区复合地基加固盐渍土效果试验[J]. 北京交通大学学报, 2012, 36(1): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201201018.htm

    ZHANG Yu, LIU Jian-kun, FANG Jian-hong, et al. Experiment study on reinforcement effect of composite foundation in saline soils of Qarhan Region[J]. Journal of Beijing Jiaotong University, 2012, 36(1): 87-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201201018.htm
    [19] 许兴旺. 高速铁路CFG桩+挤密桩工程实践及研究[J]. 铁道工程学报, 2016, 33(4): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201604008.htm

    XU Xing-wang. engineering practice and research on the high speed railway composite foundation with CFG pile + compaction pile[J]. Journal of Railway Engineering Society, 2016, 33(4): 36-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201604008.htm
    [20] MOAYED R Z, IZADI E, MIRSEPAHI M. 3D finite elements analysis of vertically loaded composite piled raft[J]. Journal of Central South University, 2013, 20(6): 1713-1723. doi: 10.1007/s11771-013-1664-y
    [21] LIU Wei, YANG Xiao-hua, ZHANG Sha-sha. Analysis of deformation characteristics of long-short pile composite foundation in salt lake area, Iran[J]. Advances in Civil Engineering, 2019, 2019(4): 1-15.
    [22] GUO Yuan-cheng, LYU Chen-yu, HOU Si-qiang, et al. experimental study on the pile-soil synergistic mechanism of composite foundation with rigid long and short piles[J]. Mathematical Problems in Engineering, 2021, 2021: 6657116.
    [23] 张恩祥, 何腊平, 龙照, 等. 黄土地区刚-柔性桩复合地基的承载机理[J]. 交通运输工程学报, 2019, 19(4): 70-80. doi: 10.19818/j.cnki.1671-1637.2019.04.007

    ZHANG En-xiang, HE La-ping, LONG Zhao, et al. Bearing mechanism of composite foundation with rigid-flexible piles in loess area[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 70-80. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.04.007
    [24] 李善珍, 马学宁, 田兆斌. 路堤荷载下长短桩加固黄土地基影响因素的分析[J]. 铁道科学与工程学报, 2017, 14(2): 241-249. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201702006.htm

    LI Shan-zhen, MA Xue-ning, TIAN Zhao-bin. Research on influence factors of long-short pile reinforced loess foundation under embankment[J]. Journal of Railway Science and Engineering, 2017, 14(2): 241-249. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201702006.htm
    [25] 李善珍, 马学宁, 田兆斌. 高速铁路长短桩加固黄土地基模型试验研究[J]. 铁道学报, 2016, 38(10): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201610015.htm

    LI Shan-zhen, MA Xue-ning, TIAN Zhao-bin. Experimental study on long-short piles reinforced loess foundation for high speed railway[J]. Journal of the China Railway Society, 2016, 38(10): 78-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201610015.htm
    [26] YANG Tao, RUAN Yi-tao, NI Jing, et al. Consolidation analysis of an impervious multi-pile composite ground under rigid foundation[J]. European Journal of Environmental and Civil Engineering, 2021, 25(7): 1287-1301. doi: 10.1080/19648189.2019.1574608
    [27] 谭鑫, 胡政博, 冯龙健, 等. 软土中碎石桩模型试验的三维离散-连续介质耦合数值模拟[J]. 岩土工程学报, 2021, 43(2): 347-355. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202102021.htm

    TAN Xin, HU Zheng-bo, FENG Long-jian, et al. Three-dimensional discrete-continuous coupled numerical simulation of a single stone column in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 347-355. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202102021.htm
  • 加载中
图(18) / 表(7)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  29
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-21
  • 网络出版日期:  2024-07-18
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回