Deformation characteristics of long-short pile composite foundation for high-speed railway in salt lake region
-
摘要: 依托伊朗德黑兰至伊斯法罕高速铁路项目,开展全长桩(混凝土桩)、全短桩(碎石桩)和长短桩(混凝土桩-碎石桩)复合地基离心模型试验,模拟了填筑与工后2年的地基沉降过程,研究了桩长比、桩间距、短桩布置形式与填土高度对地基沉降特性的影响。研究结果表明:在相同地质条件下,全长桩、长短桩和全短桩复合地基的桩间土工后沉降分别为28.16、36.17和53.95 mm,分别减小了70%、60%和40%以上,因此,全长桩和长短桩复合地基工后沉降可以满足规范要求(不超过于50 mm),长短桩复合地基工后沉降介于全长桩和全短桩复合地基工后沉降之间;桩长比每增加0.1,桩间距分别为3、4倍桩径时长短桩复合地基沉降分别减小7%~12%和8%左右,表明提高桩长比能够显著改善复合地基的沉降控制效果,并随桩间距的增大而更为有效;桩间距从3倍桩径增大到5倍桩径,桩长比为0.5时复合地基沉降从36.56 mm增至55.71 mm,桩长比为0.7时复合地基沉降从28.38 mm增至45.93 mm,表明在较大桩间距下沉降控制效果较差,为使沉降满足规范要求,桩间距为5倍桩径时桩长比应不小于0.5;桩长比为0.7时,一长一短、一长两短和一长三短3种布置形式复合地基沉降分别为28.37、38.06和43.69 mm,表明在相邻两长桩之间布置更多短桩可以兼顾沉降控制与经济性,短桩布置越多,长桩应力越大,但应力整体趋势保持不变;不同填土高度下长短桩复合地基中碎石桩块体以向下运动为主,长桩刺入垫层,短桩刺入软土,并在剪切变形与块体侧向挤出的作用下形成局部潜在滑移面。Abstract: Based on the Tehran-Isfahan high-speed railway project in Iran, centrifuge model tests were conducted for full-length pile (concrete pile) composite foundation, full-short pile (gravel pile) composite foundation, and long-short pile (concrete pile-gravel pile) composite foundation, their settlement processes were simulated in embankment construction and following two years, and the effects of pile length ratio, pile spacing, short pile layout and filling height on the settlement characteristics were studied. Research results show that under the same geological condition, the post-construction settlements of the soils between piles for full-length, long-short, and full-short pile composite foundations are 28.16, 36.17, and 53.95 mm and reduce by over 70%, 60%, and 40%. Therefore, the post-construction settlements for full-length and long-short pile composite foundations meet the regulatory requirement of no more than 50 mm, and the post-construction settlement of long-short pile composite foundation is between the settlements of full-length and full-short pile composite foundations. For long-short pile composite foundation, increasing pile length ratio by 0.1 may reduce settlement by 7%-12% for the pile spacing of 3 times pile diameter and around 8% for the pile spacing of 4 times pile diameter, indicating that increasing pile length ratio can significantly improves settlement control, and the control is more effective as pile spacing increases. When the pile spacing increases from 3 times pile diameter to 5 times pile diameter, composite foundation settlement increases from 36.56 mm to 55.71 mm for a pile length ratio of 0.5, and from 28.38 mm to 45.93 mm for a pile length ratio of 0.7, indicating that settlement control is less effective at larger pile spacing. To meet the regulatory settlement requirement, the pile length ratio should not be less than 0.5 when the pile spacing is 5 times pile diameter. For a pile length ratio of 0.7, composite foundations settlements with one long-one short, one long-two short, and one long-three short pile arrangements are 28.37, 38.06, and 43.69 mm, indicating that placing more short piles between adjacent long piles can balance settlement control and economic efficiency. As the number of short piles increases, the stress on the long piles increases, but the stress distribution trend remains unchanged. Under different filling heights, in long-short pile composite foundation, gravel piles primarily move downward, long piles penetrate cushion layer, short piles penetrate soft soil, and localized potential slip surfaces form due to shear deformation and lateral extrusion of gravel piles.
-
表 1 盐湖区地基土物理力学参数
Table 1. Physical and mechanical parameters of foundation soils in salt lake region
断面土层 天然密度/(g·cm-3 ) 黏聚力/kPa 内摩擦角/(°) 压缩模量/MPa 压缩系数 泊松比 盐渍化松软土 1.60 13 15 3 0.46 0.33 盐渍化黏土 1.70 28 23 8 0.19 0.33 表 2 模型地基土物理力学参数
Table 2. Physical and mechanical parameters of model foundation soils
断面土层 含水率/% 密度/(g·cm-3 ) 黏聚力/kPa 内摩擦角/(°) 盐渍化松软土 24.2 1.61 11.5 14.4 盐渍化黏土 8.6 1.78 20.1 23.6 表 3 离心模型试验物理量的相似比
Table 3. Similarity ratios of physical quantities in centrifugal model tests
物理量 相似比 物理量 相似比 长度 1/n 弹性模量 1 重度 n 加速度 n 黏聚力 1 应力 1 内摩擦角 1 位移 1/n 表 4 离心模型试验加速方案
Table 4. Acceleration scheme in centrifugal model tests
试验阶段 填土高度/m 加速度/g 模型历时/min 原型历时/d 模型预压 10.0 5.0 1 填土过程 2 29.1 51.2 30 4 60.5 11.8 30 5 80.0 6.8 30 工后1年 5 80.0 82.2 365 工后2年 5 80.0 82.2 365 表 5 地基处理方案
Table 5. Foundation treatment schemes
复合地基形式 长度/m 尺寸/m 桩间距/m 置换率 布桩形式 全长桩复合地基 22 0.45×0.45 1.35 0.088 全短桩复合地基 11 0.50 1.35 0.088 长短桩复合地基 长桩 22 0.45×0.45 1.35 0.044 短桩 11 0.50 0.044 表 6 地基结构的数值计算参数
Table 6. Numerical calculation parameters of foundation structures
地基结构 天然密度/(g·cm-3 ) 黏聚力/kPa 内摩擦角/(°) 泊松比 压缩模量/MPa 弹性模/MPa 渗透系数/(m·s-1) 垫层 2.1 5 30 0.33 30 1.2×10-4 路堤填方 2.1 15 27 0.33 25 盐渍化松软土 1.6 13 15 0.33 3 2.7×10-7 盐渍化黏土 1.7 28 23 0.33 8 4.3×10-7 预制桩 2.1 0.20 3.5×104 碎石桩 2.0 0 38 0.25 70.0 1.7×10-3 表 7 碎石桩参数
Table 7. Parameters of gravel pile
接触杨氏模量/GPa 接触刚度比 接触摩擦因数 密实度 块体重度/(kN·m-3) 2.0 2.0 0.55 0.8 25 -
[1] MOAYED R Z, IZADI E, HEIDARI S. Stabilization of saline silty sand using lime and micro silica[J]. Journal of Central South University, 2012, 19(10): 3006-3011. doi: 10.1007/s11771-012-1370-1 [2] AL-AMOUDI O S B, ABDULJAUWAD S N. Compressibility and collapse characteristics of arid saline sabkha soils[J]. Engineering Geology, 1995, 39(3): 185-202. [3] WAN Xu-sheng, LIAO Meng-ke, DU Li-qun. Experimental study on the influence of temperature on salt expansion of sodium sulfate saline soil[J]. Journal of Highway and Transportation Research and Development, 2017, 11(3): 1-7. [4] ZHANG Jun, WENG Xing-zhong, QU Bo, et al. Failure modes and mechanisms of pavements in saline foundations[J]. Proceedings of the Institution of Civil Engineers-Transport, 2018, 171(3): 174-182. doi: 10.1680/jtran.17.00049 [5] 杨晓华, 张莎莎, 刘伟, 等. 粗颗粒盐渍土工程特性研究进展[J]. 交通运输工程学报, 2020, 20(5): 22-40. doi: 10.19818/j.cnki.1671-1637.2020.05.002YANG Xiao-hua, ZHANG Sha-sha, LIU Wei, et al. Research progress on engineering properties of coarse-grained saline soil[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 22-40. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.002 [6] 付强, 刘汉龙, 庄妍, 等. 高速铁路CFG桩筏复合地基沉降变形特性研究[J]. 铁道科学与工程学报, 2014, 11(6): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201406009.htmFU Qiang, LIU Han-long, ZHUANG Yan, et al. Analysis of settlement characteristic of CFG piled raft composite foundation in high-speed railway[J]. Journal of Railway Science and Engineering, 2014, 11(6): 45-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201406009.htm [7] ZHANG Ding-bang, ZHANG Yi, KIM Chul-woo, et al. Effectiveness of CFG pile-slab structure on soft soil for supporting high-speed railway embankment[J]. Soils and Foundations, 2018, 58(6): 1458-1475. doi: 10.1016/j.sandf.2018.08.007 [8] 李波, 冷景岩. 高速铁路CFG桩-筏结构沉降控制现场试验[J]. 铁道工程学报, 2014, 31(2): 48-52. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201402011.htmLI Bo, LENG Jing-yan. Research on settlement control effect of CFG pile-raft structure based on field test of high-speed railway[J]. Journal of Railway Engineering Society, 2014, 31(2): 48-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201402011.htm [9] 陈建峰, 李良勇, 徐超, 等. 套筒长度对加筋碎石桩复合地基路堤变形和稳定性的影响[J]. 中南大学学报(自然科学版), 2019, 50(7): 1662-1669. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201907020.htmCHEN Jian-feng, LI Liang-yong, XU Chao, et al. Influence of encasement length on deformation and stability of embankments on composite foundation reinforced with geosynthetic-encased stone columns[J]. Journal of Central South University (Science and Technology), 2019, 50(7): 1662-1669. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201907020.htm [10] 蒋鹏程. 粉土地基CFG桩与螺杆桩复合地基承载特性对比分析[J]. 铁道学报, 2019, 41(4): 125-132. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201904018.htmJIANG Peng-cheng. Comparative analysis on bearing behaviors of CFG pile and screw pile composite foundation in silt foundation[J]. Journal of the China Railway Society, 2019, 41(4): 125-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201904018.htm [11] 黄俊杰, 王薇, 苏谦, 等. 素混凝土桩复合地基支承路堤变形破坏模式[J]. 岩土力学, 2018, 39(5): 1653-1661. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805014.htmHUANG Jun-jie, WANG Wei, SU Qian, et al. Deformation and failure modes of embankments on soft ground reinforced by plain concrete piles[J]. Rock and Soil Mechanics, 2018, 39(5): 1653-1661. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805014.htm [12] 黄龙, 王炳龙, 周顺华. 软土地基桩板结构路基离心模型试验研究[J]. 岩土力学, 2013, 34(增1): 192-196. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S1030.htmHUANG Long, WANG Bing-long, ZHOU Shun-hua. Centrifugal model test of pile-plank subgrade in soft ground[J]. Rock and Soil Mechanics, 2013, 34(S1): 192-196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S1030.htm [13] 岳浩淼, 黄建明, 文桃, 等. 换填覆重法处理砂类硫酸盐渍土地基的室内模拟试验[J]. 岩土力学, 2017, 38(2): 471-478, 486. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702022.htmYUE Hao-miao, HUANG Jian-ming, WEN Tao, et al. Experimental study of foundation treatment of sulphate saline sandy soil using heavy cover replacement technique[J]. Rock and Soil Mechanics, 2017, 38(2): 471-478, 486. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702022.htm [14] 张彧, 房建宏, 刘建坤, 等. 强夯置换复合地基加固盐渍土效果的试验研究[J]. 岩土工程学报, 2011, 33(增1): 251-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S1049.htmZHANG Yu, FANG Jian-hong, LIU Jian-kun, et al. Field tests on reinforcement effects of ground treatment of composite foundation in saline soils by dynamic compaction replacement[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 251-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S1049.htm [15] 陈耀光, 杨军, 彭芝平, 等. 饱和盐渍土地基处理孔隙水压力实测分析[J]. 岩土工程学报, 2010, 32(增2): 529-532. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2130.htmCHEN Yao-guang, YANG Jun, PENG Zhi-ping, et al. Test analysis on pore water pressure in ground treatment to saturated saline soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 529-532. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2130.htm [16] 彭芝平, 杨军, 陈耀光, 等. 饱和盐渍土碎石排水桩加强夯试验研究[J]. 岩土工程学报, 2010, 32(增2): 136-141. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2035.htmPENG Zhi-ping, YANG Jun, CHEN Yao-guang, et al. Experimental study on ground improvement of saturated saline soil with dynamic consolidation and drainage stone columns[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 136-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2035.htm [17] 黄晓波, 周立新, 何淑军, 等. 浸水预溶强夯法处理盐渍土地基试验研究[J]. 岩土力学, 2006, 27(11): 2080-2084. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200611047.htmHUANG Xiao-bo, ZHOU Li-xin, HE Shu-jun, et al. Study on test of saline soil ground treatment with the soaking and dissolving combined dynamic compaction method[J]. Rock and Soil Mechanics, 2006, 27(11): 2080-2084. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200611047.htm [18] 张彧, 刘建坤, 房建宏, 等. 察尔汗地区复合地基加固盐渍土效果试验[J]. 北京交通大学学报, 2012, 36(1): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201201018.htmZHANG Yu, LIU Jian-kun, FANG Jian-hong, et al. Experiment study on reinforcement effect of composite foundation in saline soils of Qarhan Region[J]. Journal of Beijing Jiaotong University, 2012, 36(1): 87-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201201018.htm [19] 许兴旺. 高速铁路CFG桩+挤密桩工程实践及研究[J]. 铁道工程学报, 2016, 33(4): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201604008.htmXU Xing-wang. engineering practice and research on the high speed railway composite foundation with CFG pile + compaction pile[J]. Journal of Railway Engineering Society, 2016, 33(4): 36-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201604008.htm [20] MOAYED R Z, IZADI E, MIRSEPAHI M. 3D finite elements analysis of vertically loaded composite piled raft[J]. Journal of Central South University, 2013, 20(6): 1713-1723. doi: 10.1007/s11771-013-1664-y [21] LIU Wei, YANG Xiao-hua, ZHANG Sha-sha. Analysis of deformation characteristics of long-short pile composite foundation in salt lake area, Iran[J]. Advances in Civil Engineering, 2019, 2019(4): 1-15. [22] GUO Yuan-cheng, LYU Chen-yu, HOU Si-qiang, et al. experimental study on the pile-soil synergistic mechanism of composite foundation with rigid long and short piles[J]. Mathematical Problems in Engineering, 2021, 2021: 6657116. [23] 张恩祥, 何腊平, 龙照, 等. 黄土地区刚-柔性桩复合地基的承载机理[J]. 交通运输工程学报, 2019, 19(4): 70-80. doi: 10.19818/j.cnki.1671-1637.2019.04.007ZHANG En-xiang, HE La-ping, LONG Zhao, et al. Bearing mechanism of composite foundation with rigid-flexible piles in loess area[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 70-80. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.04.007 [24] 李善珍, 马学宁, 田兆斌. 路堤荷载下长短桩加固黄土地基影响因素的分析[J]. 铁道科学与工程学报, 2017, 14(2): 241-249. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201702006.htmLI Shan-zhen, MA Xue-ning, TIAN Zhao-bin. Research on influence factors of long-short pile reinforced loess foundation under embankment[J]. Journal of Railway Science and Engineering, 2017, 14(2): 241-249. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201702006.htm [25] 李善珍, 马学宁, 田兆斌. 高速铁路长短桩加固黄土地基模型试验研究[J]. 铁道学报, 2016, 38(10): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201610015.htmLI Shan-zhen, MA Xue-ning, TIAN Zhao-bin. Experimental study on long-short piles reinforced loess foundation for high speed railway[J]. Journal of the China Railway Society, 2016, 38(10): 78-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201610015.htm [26] YANG Tao, RUAN Yi-tao, NI Jing, et al. Consolidation analysis of an impervious multi-pile composite ground under rigid foundation[J]. European Journal of Environmental and Civil Engineering, 2021, 25(7): 1287-1301. doi: 10.1080/19648189.2019.1574608 [27] 谭鑫, 胡政博, 冯龙健, 等. 软土中碎石桩模型试验的三维离散-连续介质耦合数值模拟[J]. 岩土工程学报, 2021, 43(2): 347-355. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202102021.htmTAN Xin, HU Zheng-bo, FENG Long-jian, et al. Three-dimensional discrete-continuous coupled numerical simulation of a single stone column in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 347-355. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202102021.htm