Suppression effect of rail vibration absorber on self-excited vibration of wheel-rail friction
-
摘要: 基于摩擦自激振动理论和现场调研,建立了DTVI2和科隆蛋扣件结构支撑下的小半径曲线区段轮对-钢轨-吸振器系统有限元模型,采用复特征值分析和瞬时动态分析研究了2种扣件区段钢轨吸振器对钢轨波磨的抑制效果;通过最小二乘法和粒子群算法研究了钢轨吸振器的不同参数对钢轨波磨的影响规律,确定2种扣件下钢轨吸振器的最优参数组合。研究结果表明:安装钢轨吸振器前后,轮对-钢轨-吸振器系统发生摩擦自激振动的主要频率为480 Hz;DTVI2扣件的最大垂向振动加速度由270.01 m·s-2下降到206.07 m·s-2,降低了23.71 %,功率谱密度(PSD)峰值由98.98 dB下降到94.92 dB;科隆蛋扣件的最大垂向振动加速度由300.97 m·s-2下降到211.44 m·s-2,降低了29.74%,PSD峰值由101.58 dB下降到95.14 dB;在DTVI2扣件区段中,钢轨吸振器质量为14.0 kg,连接刚度为9.0×106 N·m-1,连接阻尼为1.0×105 N·s·m-1时对钢轨波磨的抑制效果最好;在科隆蛋扣件区段中,钢轨吸振器质量为7.5 kg,连接刚度为1.07×107 N·m-1,连接阻尼为1.0×105 N·s·m-1时钢轨波磨的抑制效果最好。可见,安装钢轨吸振器能够有效抑制轮轨系统的摩擦自激振动,从而抑制钢轨波磨的产生和发展;钢轨吸振器对科隆蛋扣件区段钢轨波磨的抑制效果优于DTVI2扣件区段;合理选取钢轨吸振器的连接参数会进一步抑制钢轨波磨的产生和发展。Abstract: Based on the frictional self-excited vibration theory and field investigation, the finite element model of the wheelset-rail-vibration absorber system in the small-radius curve section supported by DTVI2 fasteners and Cologne egg fasteners were established. The suppression effect of the two kinds of rail vibration absorbers on the rail corrugation was studied by two methods of complex eigenvalue analysis and instantaneous dynamic analysis. The effect laws of different parameters of rail vibration absorber on rail corrugation were analyzed by the least square method and particle swarm algorithm, and the optimal parameter combinations of rail vibration absorber under two kinds of fasteners were determined. Research results show that the main frequency of the frictional self-excited vibration of the wheelset-rail-vibration absorber system is 480 Hz before and after installing the rail vibration absorber. The maximum vertical vibration acceleration of the DTVI2 fastener decreases from 270.01 m·s-2 to 206.07 m·s-2, representing a decline of 23.71%. The peak value of power spectral density (PSD) reduces from 98.98 dB to 94.92 dB. The maximum vertical vibration acceleration of the Cologne-egg fastener decreases from 300.97 m·s-2 to 211.44 m·s-2, representing a decline of 29.74%. The peak value of PSD reduces from 101.58 dB to 95.14 dB. In the DTVI2 fastener section, the suppression effect on rail corrugation is the best when the mass of the rail vibration absorber is 14.0 kg, the connection stiffness is 9.0×106 N·m-1 and the connection damping is 1.0×105 N·s·m-1. In the Cologne-egg fastener section, the suppression effect on rail corrugation is the best when the mass of the rail vibration absorber is 7.5 kg, the connection stiffness is 1.07×107 N·m-1 and the connection damping is 1.0×105 N·s·m-1. It can be seen that the installation of rail vibration absorbers can effectively suppress the frictional self-excited vibration of the wheel-rail system, thereby suppressing the formation and development of rail corrugation. The suppression effect of the rail vibration absorber on rail corrugation in the Cologne-egg fastener section is better than that in the DTVI2 fastener section. Appropriate selection of the connection parameters of the rail vibration absorber can suppress the formation and development of rail corrugation.
-
表 1 轮对-钢轨-吸振器系统有限元模型材料参数
Table 1. Material parameters of finite element model of wheelset- rail-vibration absorber system
部件 密度/(kg·m-3) 弹性模量/MPa 泊松比 轮对 7.8×103 2.06×105 0.3 钢轨 7.8×103 2.06×105 0.3 轨枕 2.8×103 1.90×105 0.3 钢轨吸振器 7.9×103 1.90×105 0.3 表 2 DTVI2扣件轮对-钢轨-吸振器系统的有限元模型连接参数
Table 2. Finite element model connection parameters of wheelset- rail-vibration absorber system with DTVI2 fastener
连接参数 横向 垂向 纵向 钢轨扣件刚度/(N·m-1) 8.8×106 4.1×107 8.8×106 钢轨扣件阻尼/(N·s·m-1) 1.9×103 9.9×103 1.9×103 轨道支撑刚度/(N·m-1) 5.0×107 8.9×107 5.0×107 轨道支撑阻尼/(N·s·m-1) 4.0×104 8.9×104 4.0×104 钢轨吸振器刚度/(N·m-1) 1.5×107 3.0×107 1.5×107 钢轨吸振器阻尼/(N·s·m-1) 2.0×104 4.0×104 2.0×104 表 3 科隆蛋扣件轮对-钢轨-吸振器系统的有限元模型连接参数
Table 3. Finite element model connection parameters of wheelset- rail-vibration absorber system with Cologne-egg fastener
连接参数 横向 垂向 纵向 钢轨扣件刚度/(N·m-1) 7.6×106 1.2×107 7.6×106 钢轨扣件阻尼/(N·s·m-1) 1.0×103 1.4×103 1.0×103 钢轨吸振器刚度/(N·m-1) 1.5×107 3.0×107 1.5×107 钢轨吸振器阻尼/(N·s·m-1) 2.0×104 4.0×104 2.0×104 -
[1] 李伟, 曾全君, 朱士友, 等. 地铁钢轨波磨对车辆和轨道动态行为的影响[J]. 交通运输工程学报, 2015, 15(1): 34-42. doi: 10.19818/j.cnki.1671-1637.2015.01.005LI Wei, ZENG Quan-jun, ZHU Shi-you, et al. Effect of metro rail corrugation on dynamic behaviors of vehicle and track[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 34-42. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2015.01.005 [2] 金学松, 李霞, 李伟, 等. 铁路钢轨波浪形磨损研究进展[J]. 西南交通大学学报, 2016, 51(2): 264-273. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602007.htmJIN Xue-song, LI Xia, LI Wei, et al. Review of rail corrugation progress[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 264-273. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602007.htm [3] CHEN G X, ZHOU Z R, QUYANG H, et al. A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset-track system[J]. Journal of Sound and Vibration, 2010, 329(22): 4643-4655. doi: 10.1016/j.jsv.2010.05.011 [4] WU Bo-wen, CHEN Guang-xiong, LYU Jin-zhou, et al. Generation mechanism and remedy method of rail corrugation at a sharp curved metro track with Vanguard fasteners[J]. Journal of Low Frequency Noise, Vibration, and Active Control, 2020, 39(2): 368-381. doi: 10.1177/1461348419845992 [5] 陈光雄, 钱韦吉, 莫继良, 等. 轮轨摩擦自激振动引起小半径曲线钢轨波磨的瞬态动力学[J]. 机械工程学报, 2014, 50(9): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201409010.htmCHEN Guang-xiong, QIAN Wei-ji, MO Ji-liang, et al. A transient dynamics study on wear-type rail corrugation on a tight curve due to the friction-induced self-excited vibration of a wheelset-track system[J]. Journal of Mechanical Engineering, 2014, 50(9): 71-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201409010.htm [6] 尧辉明, 沈钢, 高利君. 基于试验验证的磨耗型钢轨波磨形成机理[J]. 同济大学学报(自然科学版), 2018, 46(10): 1427-1432. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201810016.htmYAO Hui-ming, SHEN Gang, GAO Li-jun. Formation mechanism of worn profile rail corrugation based on experimental verification[J]. Journal of Tongji University (Natural Science), 2018, 46(10): 1427-1432. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201810016.htm [7] JIN Xue-song, WEN Ze-feng, ZHANG Wei-hua, et al. Numerical simulation of rail corrugation on a curved track[J]. Computers and Structures, 2005, 83(25/26): 2052-2065. [8] 尚文军. 钢轨吸振器对地铁钢轨波磨抑制作用的研究[J]. 现代城市轨道交通, 2015(3): 57-61. https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201503019.htmSHANG Wen-jun. Study of metro rail vibration absorber to reduce rail corrugation[J]. Modern Urban Transit, 2015(3): 57-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201503019.htm [9] 钱韦吉, 黄志强. 蠕滑力饱和条件下钢轨吸振器抑制短波波磨的理论研究[J]. 振动与冲击, 2019, 38(14): 68-73, 111. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201914010.htmQIAN Wei-ji, HUANG Zhi-qiang. Theoretical study on the suppression of short pitch rail corrugation induced vibration by rail vibration absorbers under saturated creep forces condition[J]. Journal of Vibration and Shock, 2019, 38(14): 68-73, 111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201914010.htm [10] 邹钰, 文永蓬, 纪忠辉, 等. 车轨耦合下钢轨复合吸振器的减振方法[J]. 振动、测试与诊断, 2021, 41(5): 888-896, 1031. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202105009.htmZOU Yu, WEN Yong-peng, JI Zhong-hui, et al. Vibration reduction method of rail composite shock absorber with vehicle-track coupling[J]. Journal of Vibration, Measurement and Diagnosis, 2021, 41(5): 888-896, 1031. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202105009.htm [11] WU Tian-xing. On the railway track dynamics with rail vibration absorber for noise reduction[J]. Journal of Sound and Vibration, 2008, 309(3/4/5): 739-755. [12] 孙晓静, 张厚贵, 刘维宁, 等. 调频式钢轨阻尼器对剪切型减振器轨道动力特性的影响[J]. 振动与冲击, 2016, 35(14): 209-214. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201614034.htmSUN Xiao-jing, ZHANG Hou-gui, LIU Wei-ning, et al. Effect of tuning rail damper on dynamic properties of the track structure using Egg fastening system[J]. Journal of Vibration and Shock, 2016, 35(14): 209-214. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201614034.htm [13] THOMPSON D J, JONES C J C, WATERS T P, et al. A tuned damping device for reducing noise from railway track[J]. Applied Acoustics, 2007, 68(1): 43-57. doi: 10.1016/j.apacoust.2006.05.001 [14] TAO Tian-you, WANG Hao, YAO Cheng-yuan, et al. Parametric sensitivity analysis on the buffeting control of a long-span triple-tower suspension bridge with MTMD[J]. Applied Sciences, 2017, 7(4): 395. doi: 10.3390/app7040395 [15] ZHAO Cai-you, WANG Ping, SHENG Xi, et al. Theoretical simulation and experimental investigation of a rail damper to minimize short-pitch rail corrugation[J]. Mathematical Problems in Engineering, 2017, 2017: 2359404. [16] BELLETTE P A, MEEHAN P A, DANIEL W J T. Effects of variable pass speed on wear-type corrugation growth[J]. Journal of Sound and Vibration, 2008, 314(3/4/5): 616-634. [17] 关庆华, 张斌, 熊嘉阳, 等. 地铁钢轨波磨的基本特征、形成机理和治理措施综述[J]. 交通运输工程学报, 2021, 21(1): 316-337. doi: 10.19818/j.cnki.1671-1637.2021.01.015 GUAN Qing-hua, ZHANG Bin, XIONG Jia-yang, et al. Review on basic characteristics, formation mechanisms, and treatment measures of rail corrugation in metro systems[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 316-337. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.015 [18] CETTOUR-JANET R, BARBARULO A, LETOURNEAUX F, et al. An Arnoldi reduction strategy applied to the semi-analytical finite element method to model railway track vibrations[J]. Mechanical Systems and Signal Processing, 2019, 116: 997-1016. doi: 10.1016/j.ymssp.2018.07.013 [19] 田彩. 一种共振原理钢轨降噪结构的减振降噪特性分析[D]. 成都: 西南交通大学, 2019.TIAN Cai. Analysis of vibration and noise reduction characteristics of rail noise reduction structure based on resonance principle[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese) [20] 杨新文, 赵治钧, 钱鼎玮, 等. 钢轨底部动力吸振器对钢轨振动与噪声的影响[J]. 哈尔滨工业大学学报, 2021, 53(3): 42-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202103006.htmYANG Xin-wen, ZHAO Zhi-jun, QIAN Ding-wei, et al. Influence of dynamic vibration absorber beneath rail base on rail vibration and noise[J]. Journal of Harbin Institute of Technology, 2021, 53(3): 42-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202103006.htm [21] 崔晓璐, 陈光雄, 杨宏光. 轮对结构和扣件刚度对钢轨波磨的影响[J]. 西南交通大学学报, 2017, 52(1): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201701016.htmCUI Xiao-lu, CHEN Guang-xiong, YANG Hong-guang. Influence of wheelset structure and fastener stiffness on rail corrugation[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 112-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201701016.htm [22] 崔晓璐, 钱韦吉, 张青, 等. 直线线路科隆蛋扣件地段钢轨波磨成因的理论研究[J]. 振动与冲击, 2016, 35(13): 114-118, 152. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201613019.htmCUI Xiao-lu, QIAN Wei-ji, ZHANG Qing, et al. Forming mechanism of rail corrugation of a straight track section supported by Cologne-egg fasteners[J]. Journal of Vibration and Shock, 2016, 35(13): 114-118, 152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201613019.htm [23] ABUBAKAR A R, OUYANG H J. Complex eigenvalue analysis and dynamic transient analysis in predicting disc brake squeal[J]. International Journal of Vehicle Noise and Vibration, 2006, 2(2): 143. doi: 10.1504/IJVNV.2006.011051 [24] OUYANG H J, NACK W, YUAN Y B, et al. Numerical analysis of automotive disc brake squeal: a review[J]. International Journal of Vehicle Noise and Vibration, 2005, 1(3/4): 207. doi: 10.1504/IJVNV.2005.007524 [25] EL BESHBICHI O, WAN C, BRUNI S, et al. Complex eigenvalue analysis and parameters analysis to investigate the formation of railhead corrugation in sharp curves[J]. Wear, 2020, 450/451: 203150. doi: 10.1016/j.wear.2019.203150 [26] 许洋, 赵新利, 徐涆文, 等. 钢轨动力吸振器减振降噪特性分析[J]. 噪声与振动控制, 2021, 41(2): 219-224. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK202102038.htmXU Yang, ZHAO Xin-li, XU Han-wen, et al. Analysis of vibration and noise reduction characteristics of rail vibration absorbers[J]. Noise and Vibration Control, 2021, 41(2): 219-224. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK202102038.htm [27] 崔晓璐, 吕东, 李童, 等. 山地地铁浮置板轨道支撑结构钢轨波磨机制研究[J]. 润滑与密封, 2022, 47(6): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF202206007.htmCUI Xiao-lu, LYU Dong, LI Tong, et al. Study on rail corrugation mechanism of floating slab track support structure in mountain metro[J]. Lubrication Engineering, 2022, 47(6): 52-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF202206007.htm [28] CARRIGAN T D, TALBOT J P. A new method to derive rail roughness from axle-box vibration accounting for track stiffness variations and wheel-to-wheel coupling[J]. Mechanical Systems and Signal Processing, 2023, 192: 110232. doi: 10.1016/j.ymssp.2023.110232 [29] XU J, CUI X L, DING H H, et al. Optimization of vibration absorbers for the suppression of rail corrugation in the sharp curved section with Cologne-egg fasteners[J]. Vehicle System Dynamics, 2024, 62(2): 395-410. doi: 10.1080/00423114.2023.2170255 [30] 文永蓬, 纪忠辉, 翁琳, 等. 双重钢轨吸振器对轨道系统的振动抑制研究[J]. 机械工程学报, 2020, 56(12): 184-195. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202012023.htmWEN Yong-peng, JI Zhong-hui, WENG Lin, et al. Study on vibration suppression of track system via double rail vibration absorber[J]. Journal of Mechanical Engineering, 2020, 56(12): 184-195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202012023.htm [31] 陈彦恒, 谢小山. 钢轨动力吸振器对地铁车轨振动的影响分析[J]. 铁道标准设计, 2017, 61(8): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201708008.htmCHEN Yan-heng, XIE Xiao-shan. Influence of dynamic vibration absorber for rail on vehicle-track vibrations[J]. Railway Standard Design, 2017, 61(8): 37-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201708008.htm [32] 赵悦, 肖新标, 韩健, 等. 高速有砟轨道钢轨动力吸振器垂向吸振特性及其参数影响[J]. 机械工程学报, 2013, 49(16): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201316004.htmZHAO Yue, XIAO Xin-biao, HAN Jian, et al. Vertical characteristic and its parameter effect of rail vibration absorber used in high-speed ballasted track[J]. Journal of Mechanical Engineering, 2013, 49(16): 17-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201316004.htm