-
摘要: 为解决不确定性事件造成的机坪车辆调度扰动问题,提出了一种基于混合策略的机坪车辆主动式实时调度方法;设计了一种考虑机坪分区的灵活运行机制,以允许车辆自适应调整停放区域;建立了一个混合整数规划模型,旨在最小化航班保障请求总响应时间与机坪车辆总行驶距离;从时空双重维度考虑服务代价,引入车辆时空服务半径指标,设计了基于未来请求信息的灵活等待策略与动态搬迁策略;通过主动式调度策略提高航班保障服务质量,降低服务车辆运行成本,并以北京首都国际机场为实例进行了实证研究。研究结果表明:与传统调度模式相比,灵活运行机制可有效提高车辆运行效率,并缩短空闲车辆折返距离,请求总响应时间与车辆总行驶距离分别下降了37.0%和36.8%;灵活等待策略适用于航班起降密集的高峰时段,车辆总行驶距离缩短了11.6%;动态搬迁策略适用于覆盖范围较广的机坪区域,在请求总响应时间降低17.8%的同时会产生较高的搬迁成本,车辆总行驶距离将增加12.5%。由此可见,针对繁忙的大型枢纽机场,采用混合策略能够在航班保障服务质量与服务车辆运行成本间取得有效平衡。Abstract: To address the scheduling perturbation problem of apron vehicles caused by uncertain events, a pro-active real-time scheduling approach of apron vehicles based on a mixed strategy was proposed. A flexible operation mechanism considering apron partitioning was designed to allow vehicles to adaptively adjust their parking areas. A mixed-integer programming model was established to minimize the total response time of flight support requests and the total travel distance of apron vehicles. The service cost was considered from both the temporal and spatial dimensions, and the spatio-temporal service radius indicator of vehicles was introduced. A flexible waiting strategy and a dynamic relocation strategy based on the future request information were designed. The quality of flight support service was enhanced by these pro-active scheduling strategies, and the operational cost of service vehicles was reduced. An empirical study was conducted at Beijing Capital International Airport. Research results show that compared to traditional scheduling modes, the flexible operation mechanism can effectively improve the vehicle operation efficiency and reduce the turnaround distance of idle vehicles. The total request response time and total vehicle travel distance decrease by 37.0% and 36.8%, respectively. The flexible waiting strategy is suitable for peak periods with dense flight landings and takeoffs. The total vehicle travel distance reduces by 11.6%. The dynamic relocation strategy is applicable to apron areas with broad coverage. The total request response time reduces by 17.8%, while generating higher relocation costs and increasing the total vehicle travel distance by 12.5%. Therefore, for busy large hub airports, adopting a mixed strategy can effectively balance the quality of flight support service and the operational cost of service vehicles.
-
表 1 机坪车辆与航班到达分布
Table 1. Distributions of apron vehicles and flight arrivals
分区 P1 P2 P3 P4 P5 P6 P7 航班数 91 102 30 26 55 47 47 始发车辆数 2 2 1 2 2 1 2 表 2 不同实时调度方法实施效果对比
Table 2. Comparison of implementation effects of different real-time scheduling approaches
实时调度方法 总请求响应时间/min 变化幅度/% 即时响应的请求数 变化数 总车辆行驶距离/km 变化幅度/% M1 193.7 323 291.3 M2 200.5 3.5 323 0 266.3 -8.6 M3(1) 197.8 2.2 329 6 257.5 -11.6 M3(2) 159.3 -17.8 338 15 327.8 12.5 M3(3) 181.5 -6.3 333 10 302.8 3.9 表 3 即时与各响应时间区间的请求数量
Table 3. Numbers of requests in real-time and each response time interval
响应时间/s M1 占比/% M2 占比/% M3(1) 占比/% M3(2) 占比/% M3(3) 占比/% 0 323 81.2 323 81.2 329 82.7 338 84.9 333 83.7 (0, 60] 11 2.8 9 2.3 9 2.3 9 2.3 8 2.0 (60, 120] 22 5.5 22 5.5 18 4.5 17 4.3 20 5.0 (120, 180] 15 3.8 13 3.3 10 2.5 10 2.5 9 2.3 (180, 240] 11 2.8 16 4.0 14 3.5 10 2.5 10 2.5 (240, 300] 16 4.0 15 3.8 17 4.3 14 3.5 18 4.5 300以上 0 0.0 0 0.0 1 0.3 0 0.0 0 0.0 总计 398 100.0 398 100.0 398 100.0 398 100.0 398 100.0 表 4 车辆行驶距离较反应式实时调度方法的变化幅度
Table 4. Change ranges of vehicle driving distances compared with reactive real-time scheduling approach
车辆顺次 M2变化幅度/% M3(1)变化幅度/% M3(2)变化幅度/% M3(3)变化幅度/% 1 -1.3 -15.0 5.2 3.4 2 -4.4 -11.6 2.3 7.8 3 -13.4 -17.8 2.7 4.7 4 -17.2 -22.4 3.8 2.3 5 -18.6 -16.6 12.4 -3.2 6 -14.8 -12.8 15.5 -2.7 7 -8.3 -7.2 18.4 5.4 8 -5.9 -5.0 17.8 6.9 9 -7.8 -8.0 12.2 4.0 10 -4.0 0.0 22.1 4.0 11 4.5 8.3 32.8 13.5 12 -6.2 -1.3 23.9 4.6 表 5 车辆行程统计数据
Table 5. Statistical data of vehicle trips
调度方法 平均行程距离/m 空闲行程数 运行分区数 最大搬迁数 平均搬迁数 最远搬迁距离/m 平均搬迁距离/m M1 450.1 210 5.3 M3(1) 447.7 150 3.6 M3(2) 413.7 199 6.1 5 2.9 3 427 1 893.5 M3(3) 425.9 153 5.2 4 2.0 3 327 1 968.2 -
[1] DU Jia-yan, BRUNNER J O, KOLISCH R. Planning towing processes at airports more efficiently[J]. Transportation Research Part E: Logistics and Transportation Review, 2014, 70: 293-304. doi: 10.1016/j.tre.2014.07.008 [2] DANTZIG G B, RAMSER J H. The truck dispatching problem[J]. Management Science, 1959, 6(1): 80-91. doi: 10.1287/mnsc.6.1.80 [3] ZHANG Wen-qiang, YANG Di-ji, ZHANG Guo-hui, et al. Hybrid multiobjective evolutionary algorithm with fast sampling strategy-based global search and route sequence difference-based local search for VRPTW[J]. Expert Systems with Applications, 2020, 145: 113151. doi: 10.1016/j.eswa.2019.113151 [4] REN Teng, LUO Tian-yu, JIA Bin-bin, et al. Improved ant colony optimization for the vehicle routing problem with split pickup and split delivery[J]. Swarm and Evolutionary Computation, 2023, 77: 101228. doi: 10.1016/j.swevo.2023.101228 [5] HESAM SADATI M E, ÇATAY B, AKSEN D. An efficient variable neighborhood search with tabu shaking for a class of multi-depot vehicle routing problems[J]. Computers and Operations Research, 2021, 133: 105269. doi: 10.1016/j.cor.2021.105269 [6] NORIN A, YUAN D, GRANBERG T A, et al. Scheduling de-icing vehicles within airport logistics: a heuristic algorithm and performance evaluation[J]. Journal of the Operational Research Society, 2012, 63(8): 1116-1125. doi: 10.1057/jors.2011.100 [7] ZHAO Pei-xin, HAN Xue, WAN Di. Evaluation of the airport ferry vehicle scheduling based on network maximum flow model[J]. Omega, 2021, 99: 102178. doi: 10.1016/j.omega.2019.102178 [8] PADRÓN S, GUIMARANS D, RAMOS J J, et al. A bi-objective approach for scheduling ground-handling vehicles in airports[J]. Computers and Operations Research, 2016, 71: 34-53. doi: 10.1016/j.cor.2015.12.010 [9] LI Qian-wen, BI Jun, LI Zi-yu. Research on ferry vehicle scheduling problem within airport operations[C]//IEEE. 2017 10th International Symposium on Computational Intelligence and Design (ISCID). New York: IEEE, 2017: 248-251. [10] BAO Dan-wen, ZHOU Jia-yi, ZHANG Zi-qian, et al. Mixed fleet scheduling method for airport ground service vehicles under the trend of electrification[J]. Journal of Air Transport Management, 2023, 108: 102379. doi: 10.1016/j.jairtraman.2023.102379 [11] WANG Zhu-rong, LI You, HEI Xin-hong, et al. Research on airport refueling vehicle scheduling problem based on greedy algorithm[C]//Springer. Intelligent Computing Theories and Application: 14th International Conference. Berlin: Springer, 2018: 717-728. [12] MOHAMMED M A, GHANI M K A, HAMED R I, et al. Solving vehicle routing problem by using improved K-nearest neighbor algorithm for best solution[J]. Journal of Computational Science, 2017, 21: 232-240. doi: 10.1016/j.jocs.2017.04.012 [13] 柴获, 何瑞春, 代存杰, 等. 考虑时空相异的危险品运输车辆安全调度[J]. 交通运输工程学报, 2019, 19(3): 145-156. doi: 10.3969/j.issn.1671-1637.2019.03.015CHAI Huo, HE Rui-chun, DAI Cun-jie, et al. Safety scheduling of hazardous materials transportation vehicle considering spatio-temporal dissimilarity[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 145-156. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.03.015 [14] KUO R J, WIBOWO B S, ZULVIA F E. Application of a fuzzy ant colony system to solve the dynamic vehicle routing problem with uncertain service time[J]. Applied Mathematical Modelling, 2016, 40(23): 9990-10001. [15] MA Wan-jing, ZENG Lin, AN Kun. Dynamic vehicle routing problem for flexible buses considering stochastic requests[J]. Transportation Research Part C: Emerging Technologies, 2023, 148: 104030. doi: 10.1016/j.trc.2023.104030 [16] FERRUCCI F, BOCK S. Pro-active real-time routing in applications with multiple request patterns[J]. European Journal of Operational Research, 2016, 253(2): 356-371. doi: 10.1016/j.ejor.2016.02.016 [17] ABDALLAH A M F M, ESSAM D L, SARKER R A. On solving periodic re-optimization dynamic vehicle routing problems[J]. Applied Soft Computing, 2017, 55: 1-12. doi: 10.1016/j.asoc.2017.01.047 [18] MITROVI AC'G -MINI AC'G S, LAPORTE G. Waiting strategies for the dynamic pickup and delivery problem with time windows[J]. Transportation Research Part B: Methodological, 2004, 38(7): 635-655. doi: 10.1016/j.trb.2003.09.002 [19] DE OLIVEIRA H C B, ROCHA G M, DE SOUZA MM, et al. A vehicular waiting time heuristic for dynamic vehicle routing problem[C]//ACM. Proceedings of the 2008 ACM Symposium on Applied Computing. New York: ACM, 2008: 13-17. [20] RITZINGER U, PUCHINGER J, RUDLOFF C, et al. Comparison of anticipatory algorithms for a dial-a-ride problem[J]. European Journal of Operational Research, 2022, 301(2): 591-608. doi: 10.1016/j.ejor.2021.10.060 [21] BÉLANGER V, KERGOSIEN Y, RUIZ A, et al. An empirical comparison of relocation strategies in real-time ambulance fleet management[J]. Computers and Industrial Engineering, 2016, 94: 216-229. doi: 10.1016/j.cie.2016.01.023 [22] HAN Xue, ZHAO Pei-xin, MENG Qing-chun, et al. Optimal scheduling of airport ferry vehicles based on capacity network[J]. Annals of Operations Research, 2020, 295(1): 163-182. doi: 10.1007/s10479-020-03743-0 [23] HASAN M H, VAN HENTENRYCK P, LEGRAIN A. The commute trip-sharing problem[J]. Transportation Science, 2020, 54(6): 1640-1675. doi: 10.1287/trsc.2019.0969 [24] BONGIOVANNI C, KASPI M, GEROLIMINIS N. The electric autonomous dial-a-ride problem[J]. Transportation Research Part B: Methodological, 2019, 122: 436-456. doi: 10.1016/j.trb.2019.03.004 [25] GENDREAU M, GUERTIN F, POTVIN J Y, et al. Parallel tabu search for real-time vehicle routing and dispatching[J]. Transportation Science, 1999, 33(4): 381-390. doi: 10.1287/trsc.33.4.381 [26] 上官伟, 庞晓宇, 李秋艳, 等. 车路协同环境下群体车辆诱导与协同运行方法[J]. 交通运输工程学报, 2022, 22(3): 68-78. doi: 10.19818/j.cnki.1671-1637.2022.03.005SHANGGUAN Wei, PANG Xiao-yu, LI Qiu-yan, et al. Guidance and cooperative operation method for group vehicles in vehicle-infrastructure cooperative environment[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 68-78. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.03.005 [27] PADRÓN S, GUIMARANS D. An improved method for scheduling aircraft ground handling operations from a global perspective[J]. Asia-Pacific Journal of Operational Research, 2019, 36(4): 1950020. doi: 10.1142/S0217595919500209 [28] DAGANZO C F, OUYANG Yan-feng, YANG Hao-lin. Analysis of ride-sharing with service time and detour guarantees[J]. Transportation Research Part B: Methodological, 2020, 140: 130-150. doi: 10.1016/j.trb.2020.07.005 [29] ZHAO P X, GAO W Q, HAN X, et al. Bi-Objective collaborative scheduling optimization of airport ferry vehicle and tractor[J]. International Journal of Simulation Modelling, 2019, 18(2): 355-365. doi: 10.2507/IJSIMM18(2)CO9 [30] BOCK S. Real-time control of freight forwarder transportation networks by integrating multimodal transport chains[J]. European Journal of Operational Research, 2010, 200(3): 733-746. doi: 10.1016/j.ejor.2009.01.046 [31] PILLAC V, GUÉRET C, MEDAGLIA A L. An event-driven optimization framework for dynamic vehicle routing[J]. Decision Support Systems, 2012, 54(1): 414-423. doi: 10.1016/j.dss.2012.06.007