Long voyage planning and battery charging/swapping strategy of pure electric green ships
-
摘要: 针对纯电动船舶长航程航次规划和充换电站选址的动态规划问题,提出了一种可行的多变量、多目标优化模型,实现航速和充换电策略的同步优化;建立了能耗最低和航时最短的双目标函数,分析了影响纯电动船舶长航程航次规划的环境和操作因素,构建了航速、航时和能耗约束条件;研究了集装箱式电池运营管理模式,建立了能量补给按照实际耗电量计费和更换电池一次性计费2种优化模型;利用非支配排序遗传算法完成了模型求解并进行试验案例验证。研究结果表明:基于案例数据条件,优化前以保证续航到第2个充换电站进行补给的最大平均航速8.5 kn计算,需耗能96 637.7 kWh、总航时62.1 h;以实际耗电量计费时,采用优化模型得到的充换电策略均是在第2个充换电站进行补给,以最短航时为优化目标时总航时仅需56.9 h,以最低能耗为优化目标时总能耗仅需65 762.5 kWh;以更换电池一次性计费时,优化模型的结果存在2种策略,即全程不换电池和在第2个充换电站更换一次电池,并且满足在更换电池前累积能耗接近船载电池的总容量,可最大程度利用能量;优化模型能够给出不同电池运营管理模式和用户偏好条件下的最优航速和充换电策略,并且能够应用于充换电站选址决策,对提高纯电动绿色船舶的运营效益具有重要意义。Abstract: To solve the problems of long voyage planning and dynamic planning of site selection of battery charging/swapping stations for pure electric ships, a feasible multi-variable and multi-objective optimization method was proposed to realize the synchronous optimization of speed and battery charging/swapping strategy. A double objective function of the lowest energy consumption and the shortest voyage time was established, the environmental and operational factors affecting long voyage planning for pure electric ships were analyzed, and the constraints of speed, voyage time and energy consumption were established. The operations management mode of the containerized battery was studied, and two optimization models of energy supply charging according to actual power consumption charging and one-time battery swapping charging were built. The models were solved by a non-dominated sorting genetic algorithm and verified by experiment cases. Research results show that based on case data conditions, before optimization, the maximum average speed of 8.5 kn ensuring continuous sailing to the second battery charging/swapping station for recharging requires 96 637.7 kWh of energy consumption and 62.1 h of total sailing time. When charging for actual power consumption, the battery charging/swapping strategy obtained by the optimization models requires recharging at the second battery charging/swapping station. When the optimization goal is the shortest sailing time, the total sailing time is only 56.9 h. When the optimization goal is the minimum energy consumption, the total energy consumption is only 65 762.5 kWh. In the case of one-time battery swapping charging, there are two strategies in the optimization model, including no battery swapping in the whole voyage and one-time battery swapping at the second battery charging/swapping station. The accumulated energy consumption before battery swapping is close to the total capacity of the battery on the ship, which can maximize the energy utilization. The optimization model can provide optimal speed and battery charging/swapping strategy under different battery operations management modes and user preferences, and can be applied to determine site selection of battery charging/swapping stations, which is of great significance to improve the operating efficiency of pure electric green ships.
-
表 1 航速-功率数据
Table 1. Speed-power data
航速/kn 主机功率/kW 5.0 195.0 6.0 320.0 7.0 526.4 7.5 646.2 8.5 938.4 9.5 1 308.2 10.0 1 525.0 10.5 1 685.0 11.0 1 936.6 表 2 帕累托解集按目标排序结果(案例1)
Table 2. Results of optimization model Pareto solution set sorted by target (case 1)
参数 v0/kn v1/kn v2/kn p1 p2 e0/kWh (e0+e1)/kWh (e0+e1+e2)/kWh 总时长/h 航时最短 8.6 8.5 11.0 0 1 32 988.9 59 998.9 114 829.0 56.9 能耗最低 6.4 6.2 6.3 0 1 22 141.2 39 844.6 65 762.5 80.0 优化前 8.5 8.5 8.5 0 1 32 171.8 58 850.4 96 637.7 62.1 表 3 优化算法单一指标排序对比结果
Table 3. Comparison results of single indicator ranking for optimization algorithms
优化算法 总能耗/kWh 总时长/h 航时最短 NSGA-Ⅱ 114 829.0 56.9 RVEA-RES 114 745.8 57.0 能耗最低 NSGA-Ⅱ 65 762.5 80.0 RVEA-RES 65 893.5 80.0 表 4 帕累托解集按目标排序结果(案例2)
Table 4. Results of Pareto solution set sorted by target (case 2)
参数 v0/kn v1/kn v2/kn p1 p2 e0/kWh (e0+e1)/kWh (e0+e1+e2)/kWh 总时长/h 航时最短 9.2 9.0 11.0 0 1 33 373.1 60 000.0 111 584.5 51.3 能耗最低 5.2 5.3 5.4 0 0 16 672.1 30 626.2 51 038.1 80.0 优化前 9.0 9.0 9.0 0 1 32 473.8 59 336.4 97 825.6 54.7 -
[1] FABER J, HANAYAMA S, ZHANG S, et al. Fourth IMO greenhouse gas study 2020[R]. London: International Maritime Organization (IMO), 2021. [2] BOWS-LARKIN A, ANDERSON K, MANDER S, et al. Shipping charts a high carbon course[J]. Nature Climate Change, 2015, 5(4): 293-295. doi: 10.1038/nclimate2532 [3] International Renewable Energy Agency. Navigating the way to a renewable future: solutions to decarbonise shipping[R]. Masdar City: International Renewable Energy Agency, 2019. [4] 赵巍. 水文与气象条件下的船舶多目标航路规划研究[D]. 长春: 吉林大学, 2021.ZHAO Wei. Research on multi-object route planning of ships under hydrological and meteorological conditions[D]. Changchun: Jilin University, 2021. (in Chinese) [5] YUAN Qiu-meng, WANG Sheng-zheng, ZHAO Jian-sen, et al. Uncertainty-informed ship voyage optimization approach for exploiting safety, energy saving and low carbon routes[J]. Ocean Engineering, 2022, 266: 112887. doi: 10.1016/j.oceaneng.2022.112887 [6] ZHANG Long-hui, PENG Xiu-yan, LIU Zheng-feng, et al. An application of augmented Lagrangian differential evolution algorithm for optimizing the speed of inland ships sailing on the Yangtze River[J]. International Journal of Naval Architecture and Ocean Engineering, 2022, 14: 100488. doi: 10.1016/j.ijnaoe.2022.100488 [7] MA Wei-hao, MA Dong-fang, MA Yi-jian, et al. Green maritime: a routing and speed multi-objective optimization strategy[J]. Journal of Cleaner Production, 2021, 305: 127179. doi: 10.1016/j.jclepro.2021.127179 [8] FAN Hou-ming, YU Jia-qi, LIU Xin-zhe. Tramp ship routing and scheduling with speed optimization considering carbon emissions[J]. Sustainability, 2019, 11: 6367. doi: 10.3390/su11226367 [9] ZHANG Yan, SUN Lin, FAN Tian-yuan, et al. Speed and energy optimization method for the inland all-electric ship in battery-swapping mode[J]. Ocean Engineering, 2023, 284: 115234. doi: 10.1016/j.oceaneng.2023.115234 [10] LI Xiao-he, SUN Bao-zhi, GUO Chun-yu, et al. Speed optimization of a container ship on a given route considering voluntary speed loss and emissions[J]. Applied Ocean Research, 2020, 94: 101995. doi: 10.1016/j.apor.2019.101995 [11] LI Xin, GU Yi-qing, FAN Xiang, et al. An optimization model for ship speed based on maneuvering control[J]. Journal of Marine Science and Engineering, 2023, 11: 49. [12] 李明峰, 王胜正, 谢宗轩. 恶劣气象海况下船舶航线的多变量多目标优化建模[J]. 中国航海, 2020, 43(2): 14-19, 30. doi: 10.3969/j.issn.1000-4653.2020.02.003LI Ming-feng, WANG Sheng-zheng, XIE Zong-xuan. Multi-variable-multi-objective optimization of ship routes under rough weather condition[J]. Navigation of China, 2020, 43(2): 14-19, 30. (in Chinese) doi: 10.3969/j.issn.1000-4653.2020.02.003 [13] 王孝元, 黄宇晴, 曹建萍. 基于粒子群算法的电池船运行优化[J]. 船舶工程, 2022, 44(2): 94-98, 133. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202202016.htmWANG Xiao-yuan, HUANG Yu-qing, CAO Jian-ping. Optimal operation of battery ship based on particle swarm optimization[J]. Ship Engineering, 2022, 44(2): 94-98, 133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202202016.htm [14] 张泽辉, 陈辉, 高海波, 等. 基于实时小波变换的燃料电池混合动力船舶能量管理策略[J]. 中国舰船研究, 2020, 15(2): 127-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG202002019.htmZHANG Ze-hui, CHEN Hui, GAO Hai-bo, et al. Energy management strategies for fuel cell hybrid ships based on real-time wavelet transform[J]. Chinese Journal of Ship Research, 2020, 15(2): 127-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG202002019.htm [15] 瞿小豪. 考虑多因素的燃料电池/锂电池混合动力船舶能效优化研究[D]. 武汉: 武汉理工大学, 2020.QU Xiao-hao. Research on energy efficiency optimization of fuel cell/lithium battery hybrid ship by considering multiple ractors[D]. Wuhan: Wuhan University of Technology, 2020. (in Chinese) [16] 张扬. 网联环境下混合动力汽车的智能能量管理策略研究[D]. 重庆: 重庆理工大学, 2022.ZHANG Yang. Research on intelligent energy management strategy of hybrid electric vehicle in networked environment[D]. Chongqing: Chongqing University of Technology, 2022. (in Chinese) [17] 吕少文. 基于智能交通的纯电动汽车速度优化控制方法研究[D]. 淄博: 山东理工大学, 2019.LYU Shao-wen. Research on electric vehicle velocity optimal control method based on intelligent transportation[D]. Zibo: Shandong University of Technology, 2019. (in Chinese) [18] 李超. 基于巡航速度优化的混合动力车辆能量管理[D]. 长春: 吉林大学, 2016.LI Chao. Hybrid electric vehicle energy management based on cruise speed optimization[D]. Changchun: Jilin University, 2016. (in Chinese) [19] 孙秉珍, 杨佳楠, 白军成, 等. 充电中断情景下电动汽车充电站两阶段多目标区间选址优化决策[J]. 控制与决策, 2022, 37(4): 1005-1014. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202204023.htmSUN Bing-zhen, YANG Jia-nan, BAI Jun-cheng, et al. A two-stage multi-objective interval location optimization decision of electric vehicle charging station under charging interruption scenario[J]. Control and Decision, 2022, 37(4): 1005-1014. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202204023.htm [20] VERMA A. Electric vehicle routing problem with time windows, recharging stations and battery swapping stations[J]. Euro Journal on Transportation and Logistics, 2018, 7: 415-451. doi: 10.1007/s13676-018-0136-9 [21] 翟小明, 尹勇, 神和龙, 等. 内河船舶模拟器中河流的绘制方法综述[J]. 中国航海, 2014, 37(3): 41-45, 126. doi: 10.3969/j.issn.1000-4653.2014.03.010ZHAI Xiao-ming, YIN Yong, SHEN He-long, et al. Review on methods of rendering of rivers in inland river ship simulator[J]. Navigation of China, 2014, 37(3): 41-45, 126. (in Chinese) doi: 10.3969/j.issn.1000-4653.2014.03.010 [22] SENA D, PEREIRA J, COSTA V. Physics-based water interaction and shading: the SiViFlow algorithm[C]// WSCG. 21st International Conference on Computer Graphics, Visualization and Computer Vision 2013. Plzen: WSCG, 2013: 49-59. [23] ZHAO Ke, ZHANG Di, JIN Jian-gang, et al. Vessel voyage schedule planning for maritime ore transportation[J]. Ocean Engineering, 2024, 291: 116503. doi: 10.1016/j.oceaneng.2023.116503 [24] GAO Jing-jie, LAN Hai, ZHANG Xi-nan, et al. A coordinated generation and voyage planning optimization scheme for all-electric ships under emission policy[J]. International Journal of Electrical Power and Energy Systems, 2024, 156: 109698. doi: 10.1016/j.ijepes.2023.109698 [25] WU G X, ATILLA I, TAHSIN T, et al. Long-voyage route planning method based on multi-scale visibility graph for autonomous ships[J]. Ocean Engineering, 2020, 219(4): 108242. [26] DU Wei, LI Yan-jun, ZHANG Guo-lei, et al. Energy saving method for ship weather routing optimization[J]. Ocean Engineering, 2022, 258(2): 111771. [27] GAN Lang-xiong, YAN Zhi-xue, ZHANG Lei, et al. Ship path planning based on safety potential field in inland rivers[J]. Ocean Engineering, 2022, 260(3): 111928. [28] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017 [29] YU Q Z, NEYRET F, BRUNETON E, et al. Scalable real-time animation of rivers[J]. Computer Graphics Forum, 2009, 28(2): 239-248. doi: 10.1111/j.1467-8659.2009.01363.x [30] CHENG R, JIN Y C, OLHOFER M, et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791. doi: 10.1109/TEVC.2016.2519378