Decoupling effect and peak prediction of carbon emission in transportation industry under dual-carbon target
-
摘要: 为助力交通运输业实现碳达峰、碳中和的战略发展目标,从历史验证和未来预测2个角度分析了中国交通运输业的碳排放变动趋势和影响因素,利用对数平均迪氏分解(LMDI)模型分解了2000至2020年中国交通运输业CO2排放量变化的影响因素,结合Tapio脱钩模型分析了行业碳排放与经济发展的脱钩状态及脱钩的驱动因素;以影响因素分解结果作为情景分析法指标选择的依据,设定不同情景下的预测指标变动量,利用岭回归构建了STIRPAT预测模型。分析结果表明:研究期内CO2排放总量呈现逐年增长的趋势,2000至2020年间累计增加了约6.94亿吨,运输强度的降低是碳排放增加的主要抑制因素,累计效应约为-6.26亿吨;人均GDP的增长是碳排放增加的最主要促进因素,累计效应约为12.94亿吨;能源消耗仍然以化石燃料为主,能源结构并未得到显著优化;行业碳排放的脱钩指数处于稳定的下降阶段,脱钩状态有所改善,主要表现为扩张负脱钩、增长连接和弱脱钩3种状态,能源结构的优化是助力脱钩最有潜力的因素;未来中国交通运输业碳排放变化趋势呈现先快速增长,在峰值附近增速减缓,达到峰值后有短期的平台,最后转入下降阶段;基准情景、悲观情景和乐观情景下中国交通运输业CO2排放量峰值分别出现在2040、2045和2035年,峰值分别约为12.10亿吨、12.63亿吨和11.30亿吨。Abstract: To help the transportation industry achieve the strategic development goals of carbon peaking and carbon neutrality, the change trend and influencing factors of carbon emission in China's transportation industry were analyzed from two perspectives of historical verification and future prediction. The logarithmic mean Divisia index (LMDI) model was used to decompose the influencing factors of CO2 emission change in China's transportation industry from 2000 to 2020. The decoupling state of carbon emission and economic development in the industry and the driving factors of decoupling were analyzed by combining the Tapio decoupling model. The decomposition results of influencing factors were used as the basis for the selection of the indicators in the scenario analysis method, and the variations of prediction indicators under different scenarios were set. A prediction model of stochastic impacts by regression on population, affluence, and technology (STIRPAT) was constructed by using ridge regression. Analysis results show that the total CO2 emission exhibits an increasing trend year by year during the study period, with a cumulative increase of 694 million tons from 2000 to 2020. The decrease in transportation intensity is the main inhibiting factor for the increase in carbon emission, with a cumulative effect of -626 million tons. The growth of per capita GDP is the most important factor promoting the increase in carbon emission, and the cumulative effect is 1 294 million tons. The energy consumption is still dominated by fossil fuels, and the energy structure is not significantly optimized. The decoupling index of industrial carbon emission is in a stable decline stage, and the decoupling state improves, mainly manifesting in three states, such as the expansion negative decoupling, growth connection, and weak decoupling. The optimization of energy structure is the most potential factor to help the decoupling. In the future, the carbon emission in China's transportation industry will rapidly grow at first, slow down near the peak, reach a plateau for a short period after the peak, and finally decline. In the baseline, pessimistic, and optimistic scenarios, the peak CO2 emission in China's transportation industry will occur in 2040, 2045, and 2035, respectively, with peaks of about 1.210 billion, 1.263 billion, and 1.130 billion tons, respectively.
-
Key words:
- transportation /
- carbon emission /
- LMDI decomposition /
- Tapio decoupling model /
- scenario analysis /
- ridge regression
-
表 1 各能源碳排放量相关参数
Table 1. Carbon emission related parameters of each energy source
能源种类 平均低位发热值/(kJ·kg-1) 含碳量/(t·10-12J) 碳氧化率 原煤 20 908 26.37 0.94 焦炭 28 435 29.42 0.93 原油 41 816 20.08 0.98 汽油 43 070 18.90 0.98 煤油 43 070 19.60 0.98 柴油 42 652 20.20 0.98 燃料油 41 816 21.10 0.98 液化石油气 50 179 17.20 0.98 天然气 38 931 15.32 0.99 表 2 各能源的标准煤折算系数
Table 2. Standard coal conversion coefficients of each energy source
能源种类 标准煤折算系数 能源种类 标准煤折算系数 原煤 0.714 3 柴油 1.457 1 焦炭 0.971 4 燃料油 1.428 6 原油 1.428 6 液化石油气 1.714 3 汽油 1.471 4 天然气 12.143 0 煤油 1.471 4 电力 1.229 0 表 3 各运输方式的客货运周转量转换系数
Table 3. Passenger and freight turnover conversion coefficients of each transportation mode
运输方式 公路 水路 铁路 民航 转换系数 0.100 0.330 1.000 0.072 表 4 交通运输业各影响因素的贡献
Table 4. Contributions of each influencing factor in transportation industry
万吨 年份 ΔCt, ES ΔCt, ET ΔCt, TG ΔCt, GP ΔCt, P ΔCt 2001 140.71 -1 171.27 -770.29 2 505.24 186.48 890.87 2002 -393.01 217.78 -959.00 2 434.74 180.63 1 481.13 2003 1 022.94 2 245.13 -2 180.38 3 587.92 186.86 4 862.48 2004 -699.98 -2 736.58 3 015.55 5 720.76 213.02 5 512.78 2005 -1 179.05 -305.76 -354.67 5 773.41 242.39 4 176.33 2006 75.10 -990.52 -2 600.20 6 897.47 237.99 3 619.84 2007 458.64 -2 298.22 -3 811.56 9 845.92 251.22 4 446.00 2008 -277.07 -2 238.93 -4 383.29 8 457.52 265.06 1 823.28 2009 364.87 -3 581.49 459.87 4 489.03 263.69 1 995.98 2010 437.61 -2 189.66 -1 229.12 9 531.72 280.50 6 831.04 2011 901.26 -1 893.94 -3 523.62 10 610.32 399.89 6 493.91 2012 -791.16 681.21 -1 088.58 6 519.53 530.39 5 851.40 2013 215.79 7 398.49 -9 791.75 6 947.18 453.75 5 223.45 2014 -367.53 -3 032.30 -435.23 6 084.93 542.78 2 792.64 2015 -541.87 5 684.21 -6 851.96 5 322.47 415.76 4 028.61 2016 868.48 -1 595.12 -3 062.91 6 486.55 574.65 3 271.65 2017 1 180.41 -579.63 -4 830.83 9 535.53 516.32 5 821.81 2018 1 640.37 -676.08 -6 117.83 9 379.74 369.40 4 595.61 2019 1 210.02 1 689.20 -9 249.86 6 753.28 333.04 735.68 2020 1 026.10 -3 939.74 -4 827.19 2 515.65 142.03 -5 083.17 累计 5 292.63 -9 313.22 -62 592.85 129 398.91 6 585.84 69 371.31 表 5 脱钩状态划分
Table 5. Decoupling states classification
脱钩分类 脱钩状态 ΔCt ΔGt εt 特征 脱钩 强脱钩 <0 >0 <0 经济增长,碳排放量减少,最理想状态 弱脱钩 >0 >0 [0.0, 0.8) 经济增速大于碳排放量增速 衰退脱钩 <0 <0 >1.2 经济衰退速度小于碳排放量减少速度 连接 增长连接 >0 >0 [0.8, 1.2] 经济增速与碳排放量增加速度相当 衰退连接 <0 <0 [0.8, 1.2] 经济衰退与碳排放量减少速度相当 负脱钩 扩张负脱钩 >0 >0 >1.2 经济增速小于碳排放量增速 弱负脱钩 <0 <0 [0.0, 0.8) 经济衰退速度大于碳排放量减少速度 强负脱钩 >0 <0 <0 经济衰退,碳排放量增加,最不理想状态 表 6 交通运输业各影响因素对脱钩指数的贡献
Table 6. Contributions of each influencing factor in transportation industry to decoupling index
年份 ε1 ε2 ε3 ε4 ε5 εt 2001 0.051 -0.421 -0.277 0.900 0.067 0.320 2002 -0.147 0.082 -0.359 0.912 0.068 0.555 2003 0.276 0.605 -0.588 0.967 0.050 1.310 2004 -0.117 -0.458 0.505 0.958 0.036 0.923 2005 -0.191 -0.050 -0.058 0.937 0.039 0.678 2006 0.010 -0.133 -0.350 0.929 0.032 0.487 2007 0.042 -0.212 -0.352 0.909 0.023 0.410 2008 -0.030 -0.239 -0.469 0.905 0.028 0.195 2009 0.075 -0.734 0.094 0.920 0.054 0.409 2010 0.043 -0.217 -0.122 0.946 0.028 0.678 2011 0.079 -0.166 -0.309 0.930 0.035 0.569 2012 -0.111 0.096 -0.153 0.917 0.075 0.823 2013 0.029 0.985 -1.304 0.925 0.060 0.696 2014 -0.054 -0.446 -0.064 0.896 0.080 0.411 2015 -0.093 0.980 -1.182 0.918 0.072 0.695 2016 0.120 -0.221 -0.424 0.899 0.080 0.453 2017 0.115 -0.056 -0.469 0.927 0.050 0.566 2018 0.164 -0.068 -0.611 0.937 0.037 0.459 2019 0.165 0.231 -1.263 0.922 0.045 0.100 2020 0.371 -1.425 -1.746 0.910 0.051 -1.838 表 7 2021至2050年情景参数平均变化率预测值
Table 7. Predicted average change rates of scenario parameters from 2021 to 2050
% 情景设定 变量 2021至2025 2026至2030 2031至2035 2036至2040 2041至2045 2046至2050 悲观情景 CP 0.34 0.25 -0.12 -0.22 -0.32 -0.45 CG 4.75 4.50 4.40 4.37 4.35 4.33 CU 1.23 1.20 0.98 0.68 0.48 0.38 CJ 3.65 3.85 4.15 5.15 5.65 6.25 CS 3.00 2.50 1.28 0.95 0.75 0.70 CR -0.98 -0.96 -0.94 -0.93 -0.91 -0.90 基准情景 CP 0.31 0.22 -0.15 -0.25 -0.35 -0.48 CG 4.60 4.35 4.25 4.22 4.20 4.18 CU 1.15 1.12 0.90 0.60 0.40 0.30 CJ 4.00 4.20 4.50 5.50 6.00 6.60 CS 2.75 2.25 1.03 0.70 0.50 0.45 CR -1.03 -1.01 -0.99 -0.98 -0.96 -0.95 乐观情景 CP 0.23 -0.13 -0.22 0.31 0.39 0.54 CG 4.45 4.20 4.10 4.07 4.05 4.03 CU 1.10 1.07 0.85 0.55 0.35 0.25 CJ 4.45 4.65 4.95 5.95 6.45 7.05 CS 2.40 1.90 0.68 0.35 0.15 0.10 CR -1.09 -1.07 -1.05 -1.04 -1.02 -1.01 表 8 岭回归分析结果
Table 8. Results of ridge regression analysis
偏倚参数为0.15 非标准化系数 标准化系数 t统计量 显著性水平 拟合优度 F统计量 回归系数 标准误差 常数 -4.661 0.651 -7.157 0.002*** 0.99 63.158 (0.001***) ln(P) 1.426 0.166 0.162 8.578 0.001*** ln(G) 0.090 0.010 0.167 8.665 0.001*** ln(U) 0.256 0.040 0.130 6.338 0.003*** ln(J) 0.031 0.037 0.039 0.840 0.448 ln(S) 0.443 0.079 0.312 5.638 0.005*** ln(R) 0.531 0.159 0.192 3.330 0.029*** 表 9 三种情景下交通运输业CO2排放量预测值
Table 9. Predicted CO2 emissions in transportation industry under three scenarios
亿吨 年份 悲观情景 基准情景 乐观情景 年份 悲观情景 基准情景 乐观情景 2021 10.093 0 10.080 5 10.063 4 2036 12.429 5 12.045 6 11.276 8 2022 10.308 4 10.275 1 10.226 0 2037 12.469 7 12.060 1 11.253 8 2023 10.528 5 10.473 5 10.391 2 2038 12.510 0 12.074 6 11.239 8 2024 10.753 3 10.675 7 10.592 0 2039 12.550 5 12.089 1 11.221 3 2025 10.982 8 10.881 9 10.729 8 2040 12.591 0 12.103 7 11.202 9 2026 11.177 4 11.052 5 10.823 3 2041 12.599 2 12.087 0 11.157 9 2027 11.375 5 11.225 8 10.917 7 2042 12.607 4 12.070 3 11.113 2 2028 11.577 0 11.401 9 11.012 8 2043 12.615 5 12.053 6 11.068 6 2029 11.782 1 11.580 7 11.018 8 2044 12.623 7 12.037 0 11.024 2 2030 11.990 9 11.762 3 11.205 7 2045 12.631 9 12.020 4 10.980 0 2031 12.069 6 11.815 5 11.223 5 2046 12.613 2 11.978 3 10.911 2 2032 12.148 8 11.869 1 11.241 5 2047 12.594 6 11.936 3 10.842 7 2033 12.228 5 11.922 8 11.259 4 2048 12.576 0 11.894 5 10.774 7 2034 12.308 7 11.976 9 11.277 4 2049 12.557 5 11.852 9 10.707 2 2035 12.389 5 12.031 1 11.295 4 2050 12.538 9 11.811 4 10.640 0 -
[1] BP Amoco. BP statistical review of world energy 2022|71st edition[R]. London: BP Amoco, 2022. [2] GUO Ming-yuan, CHEN Shao-li, ZHANG Jing, et al. Environment Kuznets curve in transport sector's carbon emission: evidence from China[J]. Journal of Cleaner Production, 2022, 371: 133504. doi: 10.1016/j.jclepro.2022.133504 [3] IPCC. Climate change 2022 mitigation of climate change[R]. Geneva: IPCC, 2022. [4] 李晓易, 谭晓雨, 吴睿, 等. 交通运输领域碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23(6): 15-21.LI Xiao-yi, TAN Xiao-yu, WU Rui, et al. Paths for carbon peak and carbon neutrality in transport sector in China[J]. Strategic Study of CAE, 2021, 23(6): 15-21. (in Chinese) [5] 李小冬, 朱辰. 我国建筑碳排放核算及影响因素研究综述[J]. 安全与环境学报, 2020, 20(1): 317-327.LI Xiao-dong, ZHU Chen. Summary of research on account of carbon emission in building industry and analysis of its influential factors[J]. Journal of Safety and Environment, 2020, 20(1): 317-327. (in Chinese) [6] 陈涛, 李晓阳, 陈斌. 中国碳排放影响因素分解及峰值预测研究[J]. 安全与环境学报, 2024, 24(1): 396-406.CHEN Tao, LI Xiao-yang, CHEN Bin. Decomposition of influencing factors and peak prediction of carbon emissions in China[J]. Journal of Safety and Environment, 2024, 24(1): 396-406. (in Chinese) [7] 刘吉毅, 黄福友, 陈斌. 交通运输业碳排放影响因素及减排策略研究[J]. 公路, 2023, 68(5): 252-259.LIU Ji-yi, HUANG Fu-you, CHEN Bin. Research on influencing factors and emission reduction strategies of carbon emission in transportation industry[J]. Highway, 2023, 68(5): 252-259. (in Chinese) [8] 王靖添, 马晓明. 低碳交通研究进展与启示[J]. 生态经济, 2021, 37(5): 57-64.WANG Jing-tian, MA Xiao-ming. Research progress of low-carbon transportation and its enlightenment[J]. Ecological Economy, 2021, 37(5): 57-64. (in Chinese) [9] LIU Man-zhi, ZHANG Xi-xi, ZHANG Meng-ya, et al. Influencing factors of carbon emissions in transportation industry based on C-D function and LMDI decomposition model: China as an example[J]. Environmental Impact Assessment Review, 2021, 90: 106623. doi: 10.1016/j.eiar.2021.106623 [10] 卢建锋, 傅惠, 王小霞. 区域交通运输业碳排放效率影响因素研究[J]. 交通运输系统工程与信息, 2016, 16(2): 25-30.LU Jian-feng, FU Hui, WANG Xiao-xia. Research on the impact of regional transportation emissions efficiency factors[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(2): 25-30. (in Chinese) [11] 杜强, 孙强, 杨琦, 等. 中国交通运输业碳排放驱动因素的通径分析方法[J]. 交通运输工程学报, 2017, 17(2): 143-150. https://transport.chd.edu.cn/article/id/201702016DU Qiang, SUN Qiang, YANG Qi, et al. Path analysis method of driving factors of carbon emissions for Chinese transportation industry[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 143-150. (in Chinese) https://transport.chd.edu.cn/article/id/201702016 [12] SUN Hua-ping, HU Ling-xiang, GENG Yong, et al. Uncovering impact factors of carbon emissions from transportation sector: evidence from China's Yangtze River Delta Area[J]. Mitigation and Adaptation Strategies for Global Change, 2020, 25: 1423-1437. doi: 10.1007/s11027-020-09934-1 [13] 王靖添, 马晓明. 中国交通运输碳排放影响因素研究——基于双层次计量模型分析[J]. 北京大学学报(自然科学版), 2021, 57(6): 1133-1142.WANG Jing-tian, MA Xiao-ming. Influencing factors of carbon emissions from transportation in China: empirical analysis based on two-level econometrics method[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(6): 1133-1142. (in Chinese) [14] TAPIO P. Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001[J]. Transport Policy, 2005, 12(2): 137-151. doi: 10.1016/j.tranpol.2005.01.001 [15] LI Rong-rong, LI Le-jia, WANG Qiang. The impact of energy efficiency on carbon emissions: evidence from the transportation sector in Chinese 30 provinces[J]. Sustainable Cities and Society, 2022, 82: 103880. doi: 10.1016/j.scs.2022.103880 [16] 吕靖烨, 李珏. 中国各省份碳排放脱钩效应、驱动因素及预测研究[J]. 环境科学与技术, 2022, 45(2): 210-220.LYU Jing-ye, LI Jue. Research on the decoupling effect, driving factors and forecast of China's carbon emissions[J]. Environmental Science and Technology, 2022, 45(2): 210-220. (in Chinese) [17] PAN Xun-zhang, WANG Hai-lin, WANG Li-ning, et al. Decarbonization of China's transportation sector: in light of national mitigation toward the Paris Agreement goals[J]. Energy, 2018, 155: 853-864. doi: 10.1016/j.energy.2018.04.144 [18] ZHU Xiao-ping, LI Rong-rong. An analysis of decoupling and influencing factors of carbon emissions from the transportation sector in the Beijing-Tianjin-Hebei Area, China[J]. Sustainability, 2017, 9: 722. doi: 10.3390/su9050722 [19] 胡怀敏, 左薇, 徐士元. 长江经济带交通能源碳排放脱钩效应及驱动因素研究[J]. 长江流域资源与环境, 2022, 31(4): 862-877.HU Huai-min, ZUO Wei, XU Shi-yuan. Decoupling effect and driving factors of transportation energy carbon emission in Yangtze River Economic Belt[J]. Resources and Environment in the Yangtze Basin, 2022, 31(4): 862-877. (in Chinese) [20] WANG Hai-lin, OU Xun-min, ZHANG Xi-liang. Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050[J]. Energy Policy, 2017, 109: 719-733. doi: 10.1016/j.enpol.2017.07.010 [21] 黄志辉, 纪亮, 尹洁, 等. 中国道路交通二氧化碳排放达峰路径研究[J]. 环境科学研究, 2022, 35(2): 385-393.HUANG Zhi-hui, JI Liang, YIN Jie, et al. Peak pathway of China's road traffic carbon emissions[J]. Research of Environmental Sciences, 2022, 35(2): 385-393. (in Chinese) [22] 袁志逸, 李振宇, 康利平, 等. 中国交通部门低碳排放措施和路径研究综述[J]. 气候变化研究进展, 2021, 17(1): 27-35.YUAN Zhi-Yi, LI Zhen-yu, KANG Li-ping, et al. A review of low-carbon measurements and transition pathway of transport sector in China[J]. Climate Change Research, 2021, 17(1): 27-35. (in Chinese) [23] LIU Qiang, GU A-lun, TENG Fei, et al. Peaking China's CO2 emissions: trends to 2030 and mitigation potential[J]. Energies, 2017, 10(2): 209. doi: 10.3390/en10020209 [24] BAUMGÄRTNER N, DEUTZ S, REINERT C, et al. Life-cycle assessment of sector-coupled national energy systems: environmental impacts of electricity, heat, and transportation in Germany till 2050[J]. Frontiers in Energy Research, 2021, 9: 621502. doi: 10.3389/fenrg.2021.621502 [25] 李晓易, 吴睿. 交通运输温室气体核算边界和测算方法研究[J]. 气候变化研究进展, 2023, 19(1): 84-90.LI Xiao-Yi, WU Rui. Research on greenhouse gas emissions accounting boundaries and calculating method of the transport sector[J]. Climate Change Research, 2023, 19(1): 84-90. (in Chinese) [26] ZHU Chang-zheng, WANG Meng, YANG Ya-rong. Analysis of the influencing factors of regional carbon emissions in the Chinese transportation industry[J]. Energies, 2020, 13(5): 1100. doi: 10.3390/en13051100 [27] 卢建锋, 韩霜, 康家华. 区域交通运输业碳排放变化的驱动因素分解分析[J]. 交通运输工程与信息学报, 2016, 14(2): 56-62.LU Jian-feng, HAN Shuang, KANG Jia-hua. Driving factor decomposition analysis of carbon emissions for regional transportation[J]. Journal of Transportation Engineering and Information, 2016, 14(2): 56-62. (in Chinese) [28] ZHU Chang-zheng, YANG Sha, LIU Peng-bo. Study on the factors influencing on the carbon emissions of Shaanxi Province's transportation industry in China[J]. Sustainability, 2022, 14(14): 8610. doi: 10.3390/su14148610 [29] 卢升荣, 蒋惠园, 刘瑶. 交通运输业CO2排放区域差异及影响因素[J]. 交通运输系统工程与信息, 2017, 17(1): 32-39.LU Sheng-rong, JIANG Hui-yuan, LIU Yao. Regional disparities and influencing factors of CO2 emission in transportation industry[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(1): 32-39. (in Chinese) [30] JIANG Rui, WU Peng, WU Cheng-ke. Driving factors behind energy-related carbon emissions in the U.S. road transport sector: a decomposition analysis[J]. International Journal of Environmental Research and Public Health, 2022, 19: 2321. doi: 10.3390/ijerph19042321 [31] LI Lin-na. Structure and influencing factors of CO2 emissions from transport sector in three major metropolitan regions of China: estimation and decomposition[J]. Transportation, 2019, 46: 1245-1269. doi: 10.1007/s11116-017-9827-6 [32] 张宏钧, 王利宁, 陈文颖. 公路与铁路交通碳排放影响因素[J]. 清华大学学报(自然科学版), 2017, 57(4): 443-448.ZHANG Hong-jun, WANG Li-ning, CHEN Wen-ying. Decomposition analysis of CO2 emissions from road and rail transport systems[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(4): 443-448. (in Chinese) [33] 杨绍华, 张宇泉, 耿涌. 基于LMDI的长江经济带交通碳排放变化分析[J]. 中国环境科学, 2022, 42(10): 4817-4826.YANG Shao-hua, ZHANG Yu-quan, GENG Yong. An LMDI-based investigation of the changes in carbon emissions of the transportation sector in the Yangtze River Economic Belt[J]. China Environmental Science, 2022, 42(10): 4817-4826. (in Chinese) [34] 喻洁, 达亚彬, 欧阳斌. 基于LMDI分解方法的中国交通运输行业碳排放变化分析[J]. 中国公路学报, 2015, 28(10): 112-119.YU Jie, DA Ya-bin, OUYANG Bin. Analysis of carbon emission changes in China's transportation industry based on LMDI decomposition method[J]. China Journal of Highway and Transport, 2015, 28(10): 112-119. (in Chinese) [35] YU Ya-dong, ZHOU Li, ZHOU Wen-ji, et al. Decoupling environmental pressure from economic growth on city level: the case study of Chongqing in China[J]. Ecological Indicators, 2017, 75: 27-35. doi: 10.1016/j.ecolind.2016.12.027 [36] CHEN Wei-gong, YAN Sheng-hua. The decoupling relationship between CO2 emissions and economic growth in the Chinese mining industry under the context of carbon neutrality[J]. Journal of Cleaner Production, 2022, 379(1): 134692. [37] JIANG Ke-jun, HE Chen-min, ZHU Song-li, et al. Transport scenarios for China and the role of electric vehicles under global 2 ℃/1.5 ℃ targets[J]. Energy Economics, 2021, 103: 105172. doi: 10.1016/j.eneco.2021.105172 [38] 刘伟, 陈彦斌. "两个一百年"奋斗目标之间的经济发展: 任务、挑战与应对方略[J]. 中国社会科学, 2021(3): 86-102.LIU Wei, CHEN Yan-bin. Economic development between the two centenary goals: tasks, challenges and strategies[J]. Social Sciences in China, 2021(3): 86-102. (in Chinese) [39] 刘建国, 朱跃中, 田智宇. "碳中和"目标下我国交通脱碳路径研究[J]. 中国能源, 2021, 43(5): 6-12.LIU Jian-guo, ZHU Yue-zhong, TIAN Zhi-yu. Research on path of Chinese transportation decarbonization under carbon neutralization goal[J]. Energy of China, 2021, 43(5): 6-12. (in Chinese) [40] 刘建国, 朱跃中, 戢时雨. 双碳目标下我国交通运输行业"去油化"的路径选择[J]. 中国经贸导刊, 2021(17): 38-40.LIU Jian-guo, ZHU Yue-zhong, JI Shi-yu. Path selection of "de-oiling" of Chinese transportation industry under double carbon goal[J]. China Economic and Trade Herald, 2021(17): 38-40. (in Chinese) [41] 潘崇超, 王博文, 侯孝旺, 等. 基于LMDI-STIRPAT模型的中国钢铁行业碳达峰路径研究[J]. 工程科学学报, 2023, 45(6): 1034-1044.PAN Chong-chao, WANG Bo-wen, HOU Xiao-wang, et al. Carbon peak path of the Chinese iron and steel industry based on the LMDI-STIRPAT model[J]. Chinese Journal of Engineering, 2023, 45(6): 1034-1044. (in Chinese)